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ABSTRACT 

Electronic transport properties of polymer light-emitting 

diodes (PLEDs) were determined using a machine 

learning model developed with complex impedance 

spectra generated by device simulation. The mobilities 

and bimolecular recombination coefficients were 

instantaneously determined by the machine learning 

model using experimentally-obtained complex impedance 

spectra of PLEDs as inputs.  

 

1 Introduction 

Electronic transport properties (drift mobilities, 

bimolecular recombination coefficients and localized tail 

state distributions) in polymer light-emitting diodes 

(PLEDs) have been determined from their complex 

impedance spectra measured using a conventional 

frequency response analyzer [1-2]. The information is 

fundamentally important for the synthesis of highly efficient 

light-emitting polymers and further optimization of the 

device structure of PLEDs, and short data acquisition and 

analysis time is essential to the electronic characterization 

of a number of PLEDs. 

We have developed a measurement setup based on 

time-stretched pulses and fast Fourier transform [3], which 

enables us to acquire complex impedance spectra in a few 

seconds, much faster than a conventional frequency 

response analyzer.  

Subsequent analysis of complex impedance spectra 

for obtaining the electronic transport properties needs 

considerable experience. The development of automatic 

analysis of complex impedance spectra was therefore 

rather difficult. 

In this presentation, we show that the electronic 

transport properties of PLEDs can be instantaneously 

determined from complex impedance spectra using neural 

networks. A machine-learning approach is the best way to 

develop full automatic analysis of complex impedance 

spectra.  

 

2 Device simulation 

A number of complex impedance spectra were 

generated by device simulator (SILVACO: ATLAS) to 

build a machine learning model. The reason for this is 

that sufficient number of data were easily obtained; it is 

rather difficult to experimentally collect a large number of 

data with wide range of the electric transport properties 

for machine learning. In the machine learning, 

capacitance and complex impedance spectra were used 

as explanatory variables and input physical quantities 

(mobilities and bimolecular recombination coefficients) in 

device simulations were used as objective variables.  

The physical quantities and their ranges used in the 

device simulations are shown in Table 1. Bimolecular 

recombination coefficients were given by the product of 

Langevin recombination prefactors and Langevin 

recombination coefficients. 

 

Table 1 Physical quantities used in device simulation 

physical quantities range 

hole mobility (cm2/Vs) 10-9-10-5 

hole injection barrier (eV) 0.0 – 0.1 

electron mobility (cm2/Vs) 10-9-10-5 

electron injection barrier 

(eV) 
0.0 – 0.1 

Langevin recombination 

prefactor 
10-3-10-1 

thickness (nm) 50-200 

 

We generated 10 000 complex impedance spectra 

with input values randomly selected in the range shown 

in Table 1. 80% of the spectra were used for training and 

validation data to build a machine learning model, and 
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the remaining 20% of the spectra were used for test data. 

Fig. 1 Complex impedance spectra of a PLED obtained 

by device simulation. (a) Re[Z], (b) -Im[Z], and (c) 

capacitance spectra. 

 

3 Prediction 

The complex impedance and capacitance spectra, as 

shown in Fig. 1, were used as input to a fully connected 

neural network, whose outputs were electronic transport 

properties. The machine learning model developed in this 

way cannot distinguish electron and hole mobilities, and 

hence we use the notation of higher and lower mobilities 

instead of electron and hole mobilities in Fig. 2. 

Scatter plots of the mobilities and bimolecular 

recombination coefficients input to the device simulation 

versus mobilities and bimolecular recombination 

coefficients output from the machine learning model is 

shown in Fig.2.  

 

 

 

 

Fig. 2 Scatter plots of (a) predicted higher mobility 

vs input higher mobility, (b) predicted lower mobility 

vs input lower mobility, and (c) predicted 

bimolecular recombination coefficient vs 

bimolecular recombination coefficient 

 

The machine learning model predicted the 

coefficients of the determination of 0.945 for the 

bimolecular recombination coefficients, 0.959 for higher 

mobilities, and 0.939 for lower mobilities. The coefficient 

of the determination was used to evaluate the accuracy 

of the machine learning model. The coefficient of the 

determination is a measure of how well a machine 

learning model explains the objective variable. The 

values of the coefficients of the determination are 

reasonably good for the characterization of the electronic 

transport properties of PLEDs. 
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4 Experiment 

A device to be measured is an inverted PLED with 
Super Yellow (SY) as the emissive layer. The PLED 
structure was AZO/PEI/SY (Sigma Aldrich)/MoO3/Al (the 
active area of the device was 4 mm2); AZO is Al-doped 
ZnO, PEI is poly(ethyleneimine), and Super Yellow is a 
commercially available fluorescent polymer. A patterned 
AZO glass used for cathode was cleaned using acetone, 
2-propanol, and an ultraviolet (UV)-ozone treatment. Then 
a thin PEI layer, working as an electron injection layer, was 
spun onto the AZO glass surface from an ethanol solution 
(30 s, 2000 rpm). The substrate was then annealed in the 
ambient atmosphere. A 100-nm-thick SY layer was spun 
onto the PEI layer from a chlorobenzene solution (60 s, 
800 rpm). After spin-coating of the SY layer, the substrate 
was dried at 80 °C for 15 min. 10-nm-thick MoO3 and 50-
nm-thick Al layers were then thermally evaporated 
successively onto the SY layer in a vacuum chamber. 
Finally, SY PLED was encapsulated using a seal material. 

5 Experiment results 

Figure 3 shows experimental results for complex 
impedance spectra of inverted SY PLED. 

Fig. 3 Experimentally obtained complex impedance 
spectra of SY PLED. (a) Re[Z], (b) -Im[Z], and (c) 
capacitance spectra 

To determine the electronic transport properties, 
experimentally obtained complex impedance spectra of 

the SY PLED were input into the machine learning model. 
The results are shown in Table 2. 

 

Table 2 Electric transport properties obtained by the 

machine learning model and by manual analysis 
Electric 

properties 

Machine 

Learning 

Manual 

analysis 

higher (hole) mobility 

(cm2/Vs) 
4.4 × 10-7 8.3 × 10-7 

lower (electron) 

mobility (cm2/Vs) 
3.5 × 10-9 6.6 × 10-9 

bimolecular 

recombination 

coefficients (cm-3s-1) 

2.6 × 10-15 5.9 × 10-15 

 

There were no significant differences between the 

values determined by the machine learning model and 

the manual analysis. It takes about 600 s for analyzing 

manually the complex impedance spectra, while the 

present machine learning model gives the values of the 

mobilities and the bimolecular recombination coefficient 

in 10 ms (Core i5, 2.90 GHz). 

 

6. Conclusions 

We have developed a machine learning model based 

on a neural network using complex impedance spectra 

generated by device simulation for the determination of 

electronic transport properties (bimolecular 

recombination coefficients and drift mobilities) of PLEDs. 

We have demonstrated that the electron and hole 

mobilities and the bimolecular recombination coefficients 

were instantaneously determined by the machine 

learning model from experimentally-obtained complex 

impedance spectra of SY PLEDs. The time for the 

determination is 10 ms (Core i5, 2.90 GHz), much faster 

than conventional manual analysis (about 600 s). 
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