Thermoluminescent Glasses for Neutron Detection

<u>Masanori Koshimizu</u>¹, Hiroto Yamaguchi², Genichiro Wakabayashi³, Yutaka Fujimoto², Keisuke Asai²

koshimizu.masanori@shizuoka.ac.jp

¹Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011, Japan ²Department of Applied Chemistry, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan ³Atomic Energy Research Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan Keywords: thermoluminescence, neutron, dosimetry

ABSTRACT

We have succeeded in neutron detection via thermoluminescent response of ⁶Li- and ¹⁰B- enriched glasses via subtraction of gamma-ray contribution using ¹¹B-enriched glasses containing Li of natural isotope abundance ratio.

1 Introduction

Neutrons are widely used in various fields of basic science and electric power generation in nuclear plants. In addition, recent progress of boron neutron capture therapy (BNCT) further broadened the application field. Accordingly, demand for neutron detection technique is increasing. Neutrons have no electric charge and are commonly detected via nuclear reactions with several nuclei. Among the nuclei, ³He has long been used in a proportional counter; however, use of other nuclei is necessary at present owing to serious shortage of ³He. In solid state detectors, ¹⁰B and ⁶Li are widely used.

In this study, we aimed to develop storage phosphors for registering neutron fluence distribution in BNCT. Among the storage phosphors used for radiation detection, thermoluminescence (TL) phosphors were used in the present study because of the simple read out. In addition, glass was chosen as the host of the TL materials owing to the two advantages: one is that glass can contain B and Li as the main constituent, and the other is that many glass systems containing rare-earth ions as luminescent centers have excellent emission properties.

In the case of neutron detection, accompanying gamma rays also contribute to the detection signal. Hence, gamma-ray signal should be discriminated from neutron signal. To enable the discrimination, we used the TL responses of a pair of glasses, one of which contains ⁶Li or ¹⁰B as the main constituent and have sensitivity to neutrons and gamma rays, and the other of which contains ⁷Li and ¹¹B as the main constituent and have sensitivity only to gamma rays. In this report, neutron detection capabilities of several TL glass systems based on Tb³⁺-doped Li₂O₃–B₂O₃ [1] and CaO–Al₂O₃–B₂O₃ [2] are introduced.

2 Experiments

 $27 Li_2 O - 20 Al_2 O_3 - 50 B_2 O_3 - 1.5 Tb_4 O_7$ and $Tb^{3+} \text{-doped}$

CaO-Al₂O₃-B₂O₃ glasses were synthesized via melt quenching method. Using enriched raw materials, we synthesized four glasses: ${}^{6}Li{}^{-10}B$, ${}^{6}Li{}^{-11}B$, ${}^{n}Li{}^{-10}B$, and ${}^{n}Li{}^{-11}B$ enriched glasses, where ${}^{n}Li$ denotes Li isotopes with the natural abundance ratio, for 27Li₂O-20Al₂O₃-50B₂O₃-1.5Tb₄O₇ glass. For Tb³⁺-doped CaO-Al₂O₃-B₂O₃ glass, ${}^{10}B$ - and ${}^{11}B$ -enriched glasses were synthesized.

The glass samples were irradiated with neutrons using a research reactor UTR-KINKI at Kindai University, Japan, or NASBEE, QST, Japan. After the irradiations, the TL glow curves were obtained using our original apparatus for TL measurements. The samples were placed on a ceramic heater, and the temperature was controlled using a controller. TL photons from the samples were guided to a photon counting unit via an optical fiber.

3 Results and Discussion

The photograph of the enriched $27Li_2O-20AI_2O_3-50B_2O_3-1.5Tb_4O_7$ glass samples is presented in Figure 1. The transparent glass samples were synthesized with strong green emission with UV excitation. Figure 2 presents the TL glow curves of the enriched glass samples after irradiation of neutrons at 1.0×10^8 neutrons cm⁻². A clear glow peak was observed at around 390 K for all samples, among which ⁶Li-¹¹B enriched sample showed the highest intensity. This result indicates that use of the nuclear reaction of neutrons with ⁶Li is advantageous for neutron detection.

Fig. 1. Glass samples of $27Li_2O-20Al_2O_3-50B_2O_3-1.5Tb_4O_7$ under room light and UV light of 365 nm. Copyright (2021) The Japan Society of Applied Physics [1].

Fig. 2. TL glow curves of enriched glass samples after irradiation of neutrons at 1.0×10^8 neutrons cm⁻². Copyright (2021) The Japan Society of Applied Physics [1].

The difference in the intensities of ⁿLi-¹¹B, whose TL response is mostly attributed to gamma rays, and the other samples corresponds to the neutron detection signal. The difference in the TL integral intensities at 300–500 K as functions of neutron fluence is described in Figure 2. The difference linearly increased with the neutron fluence. The ⁶Li-¹¹B enriched sample had the highest integral intensity. Based on the linear fit combined with the noise level of the measurement system, the detectable minimum neutron fluence is estimated to be 4.0×10⁶ neutrons cm⁻².

Fig. 3. Difference in TL integral intensities at 300–500 K with ⁿLi-¹¹B enriched sample as functions of neutron fluence. Copyright (2021) The Japan Society of Applied Physics [1].

The TL glow curves of 1 mol% Tb3+-doped CaO– Al₂O₃–B₂O₃ glass 2 days after neutron irradiation at 10¹¹ neutrons cm⁻² are presented in Figure 4. As we expected, the TL intensity of the ¹⁰B glass was much higher than that of ¹¹B glass, which indicates that both gamma-rays and neutrons contribute to the TL of ¹⁰B glass, while only gamma-rays contribute to the TL of ¹¹B glass. The difference in TL intensities at 420 and 530 K between ¹⁰B and ¹¹B glasses as functions of neutron fluence is shown in Figure 6. The difference increases with the neutron fluence, which indicates that the pair of ¹⁰B and ¹¹B glasses have sensitivity to neutrons within the investigated

neutron fluence range.

Fig. 4. TL glow curves of 1 mol% Tb3+-doped CaO– Al₂O₃–B₂O₃ glass 2 days after neutron irradiation at 10¹¹ neutrons cm⁻². Copyright (2019) The Ceramic Society of Japan [2].

Fig. 5 Difference in TL intensities at 420 and 530K between ¹⁰B and ¹¹B glasses as functions of neutron fluence. Copyright (2019) The Ceramic Society of Japan [2].

4 Conclusions

We have succeeded in neutron detection using TL response of ⁶Li- or ¹⁰B- enriched glasses via subtraction of gamma-ray contribution using ¹¹B-enriched glasses or those containing Li of natural isotope abundance ratio.

References

- [1] Ichiro Kawamura, Hiroki Kawamoto, Yutaka Fujimoto, Masanori Koshimizu, Go Okada, Genichiro Wakabayashi, Mitsuhiro Nogami, Keitaro Hitomi, Kenichi Watanabe, Takayuki Yanagida, Keisuke Asai, Jpn. J. Appl. Phys. 60 (2021) 036002.
- [2] Ichiro Kawamura, Hiroki Kawamoto, Yutaka Fujimoto, Masanori Koshimizu, Go Okada, Yusuke Koba, Ryo Ogawara, Takayuki Yanagida, Keisuke Asai, J. Ceram. Soc. Jpn. 127 (2019) 663.