Improvement of Photoluminescent Characteristics

by Post Annealing in O₃ atmosphere

for Y₄Si₂O₇N₂:Eu³⁺ Phosphors

<u>Rentaro Furuie¹</u>, Takumi Nishitani¹, Hiroki Shinoda ¹, Takashi Kunimoto², and Koutoku Ohmi¹

ohmi@tottori-u.ac.jp ¹Tottori Univ., 4-101, Koyama-Minami, Tottori 680-8552, JAPAN ²Tokushima Bunri Univ., 1314-1, Shido, Sanuki, Kagawa 769-2193, JAPAN Keywords: Ozone annealing, White LED phosphor, Y₄Si₂O₇N₂:Eu³⁺, Charge transfer state

ABSTRACT

A low-temperature post-annealing in O_3 atmosphere has been attempted to enhance the Eu^{3+} activation for $Y_4Si_2O_7N_2$: Eu^{3+} red phosphor, which were prepared by the solid-state reaction in NH₃. By the annealing, the photoluminescence excitation band due to the Eu^{3+} charge transfer state increases by about 40%, compared to the unannealed samples.

1 INTRODUCTION

Recently, the video format of "Rec. ITU-R BT.2020 (and BT.2100)" has been proposed, and a development of RGB phosphors covering a wide color gamut is desired. As a next generation red phosphor, a narrow emission band is required. In addition, to achieve a high luminous efficiency, the red phosphor should be excited by a blue LED light. We have been searching Eu³⁺ activated oxynitride phosphors for white LED applications. One of candidate phosphor is $Y_4Si_2O_7N_2$:Eu³⁺. Nakamoto et al. reported that Eu3+-activated Y4Si2O7N2 could be obtained by post annealing in air for both Eu²⁺ and Eu³⁺ containing Y₄Si₂O₇N₂ powder. The charge transfer state (CTS) energy of Y₄Si₂O₇N₂:Eu³⁺ was estimated to be 3.61 eV lower than that of La₂O₂S:Eu³⁺ (3.58 eV) [1]. However, the luminescent intensity was insufficient. In this paper, we attempt a low-temperature annealing in O₃ atmosphere, which has a much high oxidizability than O_2 . Therefore, the O_3 annealing is expected to enhance Eu³⁺ activation by oxidizing Eu2+, which is formed during the firing in reductive NH₃ atmosphere. A low-temperature oxidization process in O_3 is used for the ceramic synthesis [2].

2 EXPERIMENTAL

Phosphor samples were prepared by the solid state reaction method. Source materials of Y_2O_3 , SiO_2 , Si_3N_4 , and Eu_2O_3 were mixed with the stoichiometric ratio. The Eu concentration was 1 mol% for all samples. The mixture was firstly fired at 1350°C for 3h in NH₃ atmosphere [1]. After that, the post-annealing in O_3 atmosphere was performed for 5h at several temperatures between 385 - 485°C. Figure 1 shows the schematic diagram of the post-annealing system. A commercially supplied ozone generator having a generation performance of 20 g/h and

an electric furnace are serially connected. The flow rate into the furnace was controlled by a valve. The photoluminescence (PL) and PL excitation (PLE) spectra were measured by using a fluorescence spectrometer (JASCO FP-6500). For the PL temperature measurements, the optional unit of the PMU-183 (JASCO) the HPC-503 (JASCO) were also used for the lower (90 ~ 290 K) and higher temperature (270 ~ 520 K) measurements, respectively.

Fig.1 Schematic diagram of post-annealing system in O₃ atmosphere.

3 RESULTS AND DISCUSSION

In this study, we found that the optimum annealing temperature was 435° C from the optical properties of obtained phosphor powders. In this section, the all results of the samples annealed at 435° C are described.

Figure 2 shows the diffuse reflectance (DR) spectra of $Y_4Si_2O_7N_2$:Eu³⁺ annealed at 435°C in air or O₃ atmospheres. The result of the unannealed sample is also shown for reference. For the unannealed sample, a broad large absorption is observed in the spectral region from 300 to 550 nm. The absorption consists mainly of the 4f⁷–5d4f⁶ transition in Eu²⁺ centers. The f-d absorption is reduced by the annealing, and weak absorption remains from 300 to 400 nm, in which is thought to be the Eu³⁺ CTS excitation band. Taking the variation of reflectance into account, one can conclude that the Eu²⁺ ions are oxidized into Eu³⁺ ions by the annealing, and that the O₃-annealing is more effective to obtain much more Eu³⁺ ions than the air-annealing.

Figure 3 shows the PL and PLE spectra of the same samples. All samples show sharp emission lines due to the 4f⁶-4f⁶ transition of Eu³⁺ centers. In the PLE spectra, two broad excitation bands peaking at about 250 nm and 330 nm are observed. The former band is due to the host excitation, and the latter one is due to the CTS excitation, which are observed in DR spectra, respectively. A sharp excitation peak due to direct 4f-4f excitation is also observed at 460 nm. The spectral shapes are almost similar for all samples, thus the Eu³⁺ centers are located in the same sites in Y₄Si₂O₇N₂ crystals, and they are not changed by the annealing. All excitation bands are remarkably increased by annealing. Compared to the unannealed sample, the PLE intensities of the CTS band are approximately 1.4 and 2.6 times stronger for the airannealing and O₃-annealing, respectively.

Figure 4 shows the PL temperature dependences of the same samples. The measurements were carried out under the UV irradiation at 335 nm which coincides with the CTS band. For the unannealed sample, the PL intensity below 250 K is almost saturated, however slight decrease is found below and above 200 K, which might be attributed to the thermally-assisted cross relaxation in the Eu³⁺ centers. Neglecting this deviation and assuming a single activation energy from CTS to 4f ground state, curve fitting based on Arrhenius equation is performed above 250 K region. The activation energy is estimated to be 0.21 eV, which is similar but slightly smaller than the previous value [3]. For the air-annealed and O₃-annealed samples, a similar temperature quenching is observed in the high temperature region above 250 K, and the corresponding estimated activation energy is 0.22 eV and 0.25 eV, respectively. Contrary, both annealed samples show gradual increase in the lower temperature range. This fact implies the existence of shallow defects, which might be considered to be formed with the Eu³⁺ oxidization by the low temperature annealing near the surface of the powder particles. Further improvements of reducing defects and/or stable Eu³⁺ activation are required to achieve a high luminescence.

4 CONCLUSIONS

The low-temperature post-annealing in O₃ atmosphere was attempted to enhance the Eu³⁺ activation for $Y_4Si_2O_7N_2$:Eu³⁺ red phosphor. By the annealing, the intensity of the Eu³⁺ CTS excitation band is increased by about 40%, compared to the unannealed sample. This annealing technique is expected to be effective to activate Eu³⁺ centers, especially for high-covalent other oxynitride host materials.

REFERENCES

- [1] K. Nakamoto, et al., Proc. IDW '18, p. 603 (2018).
- [2] N. Hayashi, et al., Angew. Chem. Int. Ed. Engl., 50, 12547 (2011).
- [3] K. Kinoshita, et al., Proc. IDW'20, p. 355 (2020).

Fig.2 Diffuse reflectance spectra.

Fig.4 Temperature dependences of PL intensity.