

JAXA Earth API for Python : Open-Source API for Efficient and
Effective Satellite Data Distribution

Yoshinobu Sasaki1, Kohei Kawamura1, Goh Segami1, Kei Oyoshi1

sasaki.yoshinobu@jaxa.jp
1Earth Observation Research Center, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki, Japan

Keywords: Satellite, API, COG, STAC

ABSTRACT
Specifications of earth observation images differ among

satellites, sensors, and distribution systems, so the cross-
sectional use of the data is still difficult. Therefore, we are
developing the prototype of satellite data distribution API,
“JAXA Earth API for Python”, which enables us to use
JAXA's multiple satellite data immediately and intuitively.

1 Introduction
JAXA has launched and operated various earth

observation satellites. The obtained Earth observation
satellite data and various geophysical products generated
based on the data are distributed from distribution sites
such as G-Portal [1].
Specifically, JAXA delivers products such as elevation

(DSM), precipitation rate (RainRate), normalized
difference vegetation index (NDVI), land surface
temperature (LST), aerosol optical thickness (AOT), soil
moisture content (SMC), land cover classification system
(LCCS), short-wave solar radiation (SWR) and sea ice
concentration (IC0) [2][3][4][5].
Because of the usefulness of these satellite data, which

can be obtained without the need for ground-based
observation equipment, each product has been used for
different purposes. Specifically, elevation data is used for
land use studies, flood and drainage modeling, etc.,
precipitation rates are used in developing countries where
ground observation radars are not sufficiently equipped,
and AOT products are used to determine air pollution
conditions.
In addition, satellite data applications and technologies

that integrate the use of multiple geophysical products
have been gaining momentum in recent years. For
example, in the fields of agriculture and public health,
research is being conducted on the distribution of crop
status information and the comprehensive understanding
and prediction of ecological distribution using a
combination of altitude, vegetation index, soil moisture,
and other data.
However, the various geophysical products distributed

generally differ in their map projection methods
(equirectangular and sinusoidal projections), latitude and
longitude ranges of the data they contain, resolution, file
naming conventions, file formats (NetCDF, HDF, GeoTIFF,
etc.), and data distribution sites, depending on the type of
satellite, sensor, geophysical quantity, etc. Therefore, in

order to use different geophysical products in a
composite manner, one has to have expertise in remote
sensing and map projection. In addition,
latitude/longitude ranges and physical quantities not
required by the user may also be included and
distributed, which is inefficient from a data retrieval
perspective. Furthermore, since data retrieval is not fully
automated, it is time-consuming to manually retrieve
data using a browser GUI under the current conditions.
Therefore, from the perspective of providing data to
users who use it in a cross-sectional manner, this is not
necessarily an optimal data delivery method.
Therefore, we have developed and released a

prototype of the JAXA Earth service, which integrates the
satellite data products distributed by JAXA into two main
data formats, COG (Cloud Optimized GeoTIFF) and
STAC (Spatio Temporal Asset Catalog), to realize
efficient and effective data distribution [6].
In the JAXA Earth services, the API for Python, which

enables data acquisition in Python, can realize more
efficient and effective data distribution than conventional
methods [7]. Specifically, it minimizes the time and effort
required for users to manually search for products and
enables them to acquire and process only the amount of
data optimized for their area of interest and products,
without being aware of differences in format or other data
differences.
This paper introduces the data, specifications, functions,

and use cases available in the API.

2 JAXA Earth API for Python
The overall structure of the JAXA Earth service, which

provides data via API, is shown in Figure 1. It consists of
a database, API, and web application.
We have developed two versions of the API: a Python

language version, which is well known in the field of data
science, etc., and a JavaScript language version, which
is essential for generating dynamic applications in a
browser. Both APIs are in a format that operates on
client-side (i.e., using excess computing power on the
user side, which is becoming more powerful these days).
The API for Python, which was developed and released
earlier, is open source so that users can customize the
internal programs as needed.

PRJ2-1
Invited

PROCEEDINGS OF THE INTERNATIONAL DISPLAY WORKSHOPS, VOL.29, 2022

ISSN-L 1883-2490/29/0733 © 2022 ITE and SID IDW ’22 733

Fig. 1 “JAXA Earth” services data distribution flow

2.1 Data format used in the service

2.1.1 COG (Cloud Optimized GeoTIFF)
COG is one of the types of the GeoTIFF data format.

Normal GeoTIFF data stores a single image of the highest
resolution. In contrast, as shown in Figure 2, COG
sequentially stores the highest-resolution image plus an
image that has been down sampled to twice that resolution.
Each image is stored as a set of the fixed tile size (e.g.,
256 x 256 pixels). Each tile is data compressed in tile units.
The COG data contains metadata at the beginning of the

COG data, called IFD (Image File Directory), which
indicates the location where the tiles are stored. Therefore,
the user first accesses the COG stored on the server by
HTTP range request to obtain the IFD. Then, by comparing
the tile storage location information in the IFD with the
latitude and longitude range information the user wants to
obtain, the user can retrieve only the tiles with the required
resolution and latitude and longitude range. Tiles are sent
and received in a compressed state, so the amount of data
transmission is also optimized.
The internal structure of COG (IFD with tiled multi-

resolution data and tile position information) and the data
acquisition method (HTTP range request) described
above allow users to efficiently acquire data only in the
required range. Minimizing the amount of data
transmission also reduces the burden of communication
volume and facility maintenance on the data distributor
side. Therefore, it can be said that data delivery in COG
format is beneficial to both users and data distributors.

Fig.2 COG Internal file structure (images only)

2.1.2 STAC (Spatio Temporal Asset Catalog)
STAC is a JSON format representation of geospatial

data such as satellite data, metadata, and its storage
location. By using COG as a set, STAC data are
cataloged and data access become easy.
There are two ways to implement STAC: a dynamic

implementation that returns STAC that change the data
queried by the server, and a static implementation that
generates and stores all STAC. For our service, the
static implementation method was chosen because it
simplifies delivery and maintenance.
Since the STAC specification is separated from the

COG specification, it is possible to decentralize the
storage location of the COG, which is the main body of
data, to avoid access concentration and to demarcate
the scope of management. In addition, STAC has the
scalability to be updated to a format suitable for search
and display at any time, and to add more databases.

2.2 Database for the API
The database includes more than 70 types of data

shown in Table-2, including elevation data, rainfall rate
data, vegetation index, surface temperature, etc.
distributed by JAXA. Since the current service is a
prototype, the time range of the product is limited (mainly
only data for the year 2021) to allow for flexible
specification changes and updates in the future.
As for resolution, it depends on the product, but data

are stored from the global level up to the 30m level.
Frequency of data ranges from daily observations to
annual releases. Since it is inefficient for data
management to have all levels from 30m to the global in
one COG, the files are divided by keeping a maximum of
three image levels in each COG. Therefore, the
resolution stored in this database is discrete rather than
continuous. It should be noted that satellite images with

Pre-Processing system

Databases

DSM Rain NDVI LST ……

Original data from distribution site

Server
side

Web Applications

Client
Side

APIs
(Python/JavaScript)

DSM Rain NDVI LST ……

Image 1

Image 2

Image …

Image N

734 IDW ’22

a resolution equal to or higher than the resolution of the
source data are stored in the database.
The projection method currently supports two types of

map projection formats: equirectangular (EPSG:4326) and
polar stereo (EPSG:3995).
The data is released as open data that does not require

authentication, so anyone can access it without
registration for an account.

Table-1 List of products stored in the database
No. Category Description
1 DSM Digital Elevation Model provided by

AW3D30
2 Rain

Rate
Rain Rate products provided by
GSMaP

3 LST Land Surface Temperature
products provided by JASMES, G-
Portal, and so on.

4 NDVI Normalized Vegetation Index
products provided by JASMES, G-
Portal, and so on.

5 LCCS Land Cover Class products
provided by ESA CCI

6 SMC Soil Moisture Contents products
provided by G-Portal

7 SWR Short Wave Radiation products
provided by JASMES

8 AOT Aerosol Optical Thickness products
provided by G-Portal and JASMES

9 IC0 Sea Ice Concentration product
provided by JASMES

2.3 Main function of the API
The API can be used by installing or unzipping the files

listed on the reference page.
The API has been designed and produced to perform the

basic function of acquiring a desired satellite image as a
numpy array by specifying the product ID, date range,
latitude/longitude range, resolution, etc. If the product ID
and other arguments are omitted, the default settings
described inside the API will be used. The minimum code
to execute the API and visualize images is shown in Figure
3.
In addition to the basic functions, the API also has the

functions shown in Table 1. adjust the color bar and color
range of the displayed image, composite using multiple
images, masking, statistical processing, and graph display
are available. It is also possible to set arbitrary polygons
using GeoJSON for the range of interest. Detailed
specifications, usage, and examples of use are separately
maintained and published as an API reference [7].
An important feature of the API is its ability to interface

with QGIS, a major free GIS software program. The API
can automatically retrieve the latitude and longitude
ranges and resolutions displayed in QGIS, allowing

satellite images to be acquired and displayed without the
need to manually set these parameters. Therefore, users
can acquire satellite images just by setting up areas of
interest interactively on the QGIS screen and executing
the API. Figure 4 shows an example of the Python API
in QGIS.
The data loaded in QGIS is temporarily saved as a layer,

so that color bars, color ranges, etc. can be adjusted
even within QGIS.
As described above, the API minimizes the time and

effort required for users to manually search for products
and enables only the optimized amount of data to be
delivered to users without being aware of differences in
format or other factors.

Fig. 3 Minimum Python script to run the API

Table-2 Main function of the API for Python

No. Function Description
1 ID Search Collection ID searching by

keywords
2 ROI select ROI selection by GeoJSON
3 Masking Masking the image by bit or

value range or exact value.
4 Composite

Processing
Compositing multiple timeseries
image

5 Differential
processing

Calculation of the difference
image from the reference image

6 Timeseries
Processing

Calculation of spacial statistics
of multiple timeseries images

7 Visualization Showing images and timeseries
graphs, color bar settings, color
range settings

8 Interface Interface to execute in QGIS

IDW ’22 735

Fig.4 AW3D Data in QGIS visualized by the API

3 Use cases for interdisciplinary studies
The use of this API is expected to increase users in other

fields regardless of existing satellite data use areas. Some
possible use cases are described below.

3.1 Accelerating conventional research
The use of this API is expected to accelerate research on

the cross-sectional application of existing satellite data in
agriculture and public health fields, etc. By using the API,
researchers do not need to worry about extraneous
matters such as format differences between products and
can concentrate on the research itself.

3.2 Education for high school students
In 2022, the Courses of Study for high school students in

Japan will make geography compulsory, and students will
be required to learn how to use GIS (Geospatial
Information Systems). Although Web GIS is
recommended in education, Python API has an interface
function to QGIS and can interactively acquire and
visualize satellite data. Therefore, it is considered to be a
useful tool for students who are not satisfied with the GIS
classes at school, or for students who want to learn
programming.

3.3 Various data sciences and services
This API will enable researchers and IT engineers from

various fields who have never used satellite data before to
acquire and use satellite data.
By creating new users of satellite data, research and

service on new indicators using satellite data is expected.
In addition, since the API can automatically acquire data,
it can also promote the use of IoT devices that can run
Python, and satellite data is expected to play an active role
as part of the API economy in the future.

4 Conclusions
This API is more efficient (reduced data transmission and

manual operation) and effective (necessary processing on

the client side, direct interface to QGIS) JAXA satellite
data distribution system.
In the future, in addition to continuous updates of the

API for Python and the database, we plan to develop and
release the API for JavaScript and additional web
applications.

References
[1] JAXA G-Portal (https://gportal.jaxa.jp/gpr/?lang=en)
[2] ALOS Global Digital Surface Model "ALOS World 3

D - 30m (AW3D30)" (https://www.eorc.jaxa.jp/ALO
S/en/aw3d30/index.htm)

[3] Global Satellite Mapping of Precipitation : GSMaP
(https://sharaku.eorc.jaxa.jp/GSMaP/index.htm)

[4] JAXA Satellite Monitoring for Environmental Studie
s :JASMES (https://kuroshio.eorc.jaxa.jp/JASMES/
index.html)

[5] ESA CCI Land cover website (https://www.esa-land
cover-cci.org/)

[6] JAXA Earth Portal (https://data.earth.jaxa.jp/en/)
[7] JAXA Earth API for Python API Reference

 (https://data.earth.jaxa.jp/api/python/)
[8] Y. Sasaki et al, “JAXA Earth : Prototype of Earth

Observation Data Distribution System and Applicat
ion for Interdisciplinary Studies”, International Displ
ay Workshop 2021 (https://doi.org/10.36463/idw.2
021.0622)

736 IDW ’22

