Building Active matrix MicroLED displays By Additive Manufacturing (BAMBAM) – Paving the way to a sustainable fine pitch video wall

Emmanuel Fuchs1, Christophe LINCHENEAU1, Aymeric DUFAURET1, Hugues LEBRUN1, Davina MOODELLY1, Elisabeth JACQUIN1, Thibault CATELAIN1, Frédéric VACHELARD1, Denis GROENINK1, Alin FEICIORU2, Prasanna RAMASWAMY2, Iwona GRADZKA-KURZAU3, Sławomir DROZDEK3, Aneta WATROWSKA3, Clint MEYER4, Dave KEESHAN4, Matt MEITL4, Kai WALDNER5, Holger BAUR5, Norbert FRUEHAUF5, Arthur MOISSET6, Mohammad KIAEE6, Igor NAKONECHNY6, Willem WALRENS6, Madeleine VANDENABEELE7, Patrick WILLEM7, Matthias COSAERT7

emmanuel.fuchs@aledia.com, 1ALEDIA, Parc Sud Galaxie, 10 Rue des Méridiens, 38130 Echirolles
2X-Celeprint, 3XTPL, 4XDisplay, 5USTUTT, 6QustomDot, 7Barco
Keywords: Digital Pixel, Fine Pitch, Sustainable, Printing

ABSTRACT
The BAMBAM project aims to showcase the viability of an active matrix µLED display through the mass transfer on a µPackage of 3 blue NanoWire µLEDs and a pixel driver, establishing connectivity by employing silver-based wire printing on the dies and PCB interconnections. Furthermore, the project focuses on incorporating a color conversion module, utilizing patterned cavities and Red and Green Quantum Dot inks for printing. This integrated approach offers a sustainable digital pixel solution, enabling the development of high-resolution display.

1 BamBam Project
1.1 Fine Pitch Video Wall
The BamBam project, driven by a consortium with University of Stuttgart, XDISPLAY, XCELEPRINT, QUSTOMDOT, BARCO, ALEDIA & XTPL, is dedicated to addressing the fine pitch Video Wall (VW) market segment. Recognizing the potential of the additive technologies for market expansion and industrialization in Europe, this consortium has been established with partners offering a large panel of technologies, the assembly of which will expose disruptive & sustainable displays.

1.2 BamBam Pixel
The key technical differentiator of the BamBam pixel is the micro printing solution proposed by XTPL [1] and the University of Stuttgart. It offers the opportunity to achieve very narrow metal lines, down to the µm in width, but also to have a very accurate positioning of the lines with respect to the structures they are interconnecting (+/-2µm). In comparison with wire bonding rules (wire length ~ 1.5x die thickness & min. pad size ~40µm), wire printing releases connecting constraints by at least half an order of magnitude, paving the way to smaller to packages since pixel package size comes mainly from die position, printing accuracy and die size. Based on this key innovation, the consortium has designed an RGB Digital Pixel based on the following innovative heterogenous integration (Fig 1A) : on a polyimide Flex µPackage, XCELEPRINT mass transfers by stamp 3 small blue µLEDs (30x70µm²) (even better if it is Aledia NanoWire (NW) µLed with very high efficiency) and one µIC low power pixel driver (50x90µm²) designed by XDISPLAY. The positioning accuracy is very good (+/-1µm), and those dies are connected by silver-based wire printing. With such an integration, connecting very small µLed on a tiny area is possible. Comparatively, it overcomes the main drawback of the Chip On Board (COB) pixels which are limited by the Pick and Place (P&P) capability (~20µm with 2 pads Flip Chip COB, ~150µm with 4 pads Flip Chip COB) [2]. Wire printing provides similar design tolerances as photolithography on glass, which is the standard for high resolution display manufacturing, but it can be used on PCB. In comparison with Chip On Glass (COG), which is limited by the capability to connect to the backside, BamBam integration on PCB offers the capability of seamless tiles assembly. Actually, BamBam takes the best of the SMD packaging integration (easy P&P, test, sorting) and enables small, thus low cost µLed as regularly used in COG. Associated to a CMOS driver operating the LED in pulse width modulation mode, it overcomes the driving limitation of the TFT technology like IR drop, color shift with analog current driving & non-uniformity due to Vth variation [3]. After mass transfer and printing of metal lines, cavities are patterned with a black matrix on top and filled by printing with Green Qdot inks. This Color Conversion Module (CCM) integration is optimal to get broader color gamut (narrow and tunable wavelength) and higher efficiency (no diffuser for color uniformity in angle as usually done on SMD) with an easy FarField management (Fig 1B). Finally the µPackage panel is diced into 325x235µm² pixel which is compatible for pick and place on the fine pitch flexible tile. With a such approach, pitch has been reduced easily because backside layout is strongly simplified with Active-Matrix driving. No more issue with the tradeoff driver density and scan speed (64 or 128 scans at 500µm) and the very short LSB (~10ns) impacting the display dynamics. Hence, reducing the size down to
~300μm by considering all additive solutions: electrical, optical & assembly enables to propose an innovative printed μSMD Digital Pixel.

Figure 1 : Illustration of the BamBam pixel

1.3 BamBam VideoWall Tile specification

With the BamBam pixel, the consortium designs and manufactures a VW tile with the following specifications:
- Pitch equal to 390μm (home theater videowall)
- Flexible substrate,
- RGB active matrix,
- 100% REC2020,
- Brightness 1200nits
- Power Consumption < 200W/m²
- Lifetime L50 100kh
- High contrast 1:10k

Simultaneously, in light of the pressing issue of climate change, it has become imperative to prioritize the development of sustainable solutions. The printed technologies enable us to reach this objectives as explained in [4] (much better than LCD & OLED).

2 Preliminary BamBam Results

This section describes the preliminary results of the BamBam project.

2.1 BamBam Packaged Digital Pixel Concept

Before moving forward to the final BamBam pixel, the consortium debugged the packaged digital pixel (Fig 2) and the test/sorting strategy (D) with an Aledia R&D RGB μLed and a pixel driver compatible with wire bonding.

Now, similar experiments are in progress on glass with the XDC driver and by switching to wire printing (F).

Figure 2 : Validation of the Package Digital Pixel

2.2 Wire printing on Glass, Polyimide and PCB

In parallel, USTUTT tested the silver-based wire printing on different kinds of substrates. Glass and Polyimide gave good results whereas standard PCB showed not optimal results (Figure 3). Moreover, the impact of the ink curing (temperature and time) on conductivity has been analyzed. Printing over 90° step has been done as well with success. It means that the BamBam integration based on a wire printing on 30μm thickness die on a polyimide μpackage should work.

Figure 3 : Silver based wire printing on Polyimide.

2.3 Nanowire μLed by Aledia

Aledia is developing 3D μLeds based on epitaxially grown blue GaN Nanowire μ-LED on Si-wafer. When compared to existing products (LCDs, OLEDs, LCOS), this unique technology offers added energy efficiency (longer battery life) and higher brightness (outdoors readability) especially below ~20μm (Figure 4). The BamBam blue μLed is designed with 2 front side pads and aluminum as mirror at the bottom of the wire and pad compatible with wire printing rules. The pitch on the wafer will be 90x50μm to make it compatible with mass transfer printing. After a blade dicing with 20μm of dicing street (without impact on NW and the yield!) the μLed size will be around 70x30μm². The active area will be around 30x40μm²: 48 Nanowire μLeds.

Figure 4 : BamBam Blue NW μLed

2.4 RGB Light up

Based on the solutions described in 2.2, the
Figure 5: RGB Light up after wire printing

2.5 Micro Transfer Printing of the Pixel Driver

More than 15 years after its introduction, moving microLED with elastomer stamps is still one of the best ways for mass transfer. Combining accuracy and tolerance for real-world materials (+/- 1 μm), micro transfer printing allows transferring millions of devices at a time [5]. The mass transfer process of the μIC pixel driver utilizes the Anchors and Tethers method. This innovative technique involves etching below the die to release it using a sacrificial layer. The die is then attached to the wafer via anchors and tethers, and upon applying stamp pressure, the tethers are broken, allowing the release of the dies as illustrated in Figure 6.

Figure 6: Pixel driver μprinting on glass

2.6 Micro Transfer Printing of the μLed

For the μLed printing, the consortium uses the Aledia expertise on ultimate grinding (below 50 μm of thickness) and advanced singulation. Experiments are ongoing on dummies which have the same size than the final μled (pitch of 50x90 μm² and size of 30x70 μm²).

2.7 Quantum Dot Ink Formulation by QustomDot

InP-based Quantum Dots (QDs) emerged as one of the best optoelectronic ROHS compliant materials that combine high absorption coefficients with narrow and size-tunable emission properties and low toxicity vs Cd/Pb based QDs. It makes this material the only sustainable one for display industry [6]. The purpose at this stage, is to develop a QD ink (green and red) which is compatible with the XTPL printing process.

Figure 7: Red and Green Ink Formulation

2.8 Cavities filling with Qdot ink

To test the cavity filling with Qdot, Aledia processed 135x40 μm² cavities matrix on glass. By using the red and green inks compatible with the XTPL Delta Printing System, some printing trials were performed. As illustrated hereafter, printing enables a perfect control of the Qdot layer thickness in the cavity, which is very important for future optimization when adding blue light filters on top. (Conversion efficiency and Light Extraction Efficiency, Color Gamut). (Figure 8)

Figure 8: Red and Green Cavity Filling

2.9 μPackage Design and Heterogenous integration

The design of the 325x325 μm² μPackage for the...
BamBam digital RGB pixel is mainly based on the printing of wires, dies printing solution, which offer the opportunity to connect dies in a very tiny area. However there are some constraints:

- Geometric magnification compatibility between μdriver pitch, μLed pitch and μpackage pitch for transfer printing.
- Wire printing accuracy & printing sequence (+/-2μm)
- μPackage interconnection width and spacing (25μm)
- Mass transfer and die attach resolution (+/-2μm)
- Cavity patterning and QD ink printing constraints

Based on those constraints the design has been defined as illustrated below (Figure 9).

![Figure 9: Layout and stack of the BamBam pixel](image)

2.10 Pixel driving and Demo

The XDisplay Pixel Engine™ (PxE) is designed to drive the RGB pixel [7]: Each pixel μIC drives three μLEDs as three sub-pixels. Row, Column, Power, and Ground are connected to the μIC and μpackage Pad. There are 16 bits per color (14 bits PWM, 2 bits current selector).

Moreover, the advanced features (multi driving current, Pulse Width Modulation (PWM) protocol and low power design) enable excellent display driving without limitation of the TFT. In addition, printable μIC row & column drivers are designed to reduce display I/O count. Column drivers demultiplex data. Row drivers provide clocking for data writing in the pixel and PWM.

Based on this complete driver’s framework and the BamBam pixel, the consortium has designed a simple tile (40x40 pixels and a size of 1,5x1,5cm²) connected by flex to a R&D Barco test board (Figure 10). This board will be able to drive the tile with and without row and col drivers. With preliminary binning, since the test, sorting will be done at package level, the pixel-to-pixel calibration (measuring brightness and color of every pixel, calculating calibration factor table) and the optimization will be simplified (in comparison with COG approach where redundancy is required for yield and color uniformity). Then, Barco will perform a complete set of display optimization and test beginning of 2024 to analyze the BamBam pixel capabilities deeply.

3 Conclusion

OLED and LCD industries took time (>10 years) to propose great displays by compensating their respective weakness (high power consumption, screen burn-in). To make the difference, μled industry shall expose pixel with a great high-end values and key differentiators like high color gamut, high efficiency & sustainable and low-cost integration. By proposing this innovating μSDM approach by printing with the help of QD and Aledia NW μled, the BamBam project will reach this objective.

4 Acknowledgment

BAM-BAM partners thanks European Commission for granting the BAMBAM project (Project: 101070085; HORIZON-CL4-2021-DIGITAL-EMERGING-01-31). Aledia would like to also thank CEA LETI (μLed process integration), DISCO (grinding), TAIPRO (μPackage) and Benkei (EU project consulting) for their important contribution & support.

References