Electrochemical Performance of Nanosheet-like Structured Nickel-Cobalt Oxide Thin Films

Kodai Numata, Kyung Ho Kim

khkim@mail.kitami-it.ac.jp
School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan

Keywords: Nickel-Cobalt Oxide, Growth time, Cyclic Voltammetry, Charge density, Durability

ABSTRACT
Nickel-cobalt (Ni-Co) oxide thin films were prepared using the wet-chemical method with various growth times and their morphological and electrochemical properties were investigated. The thin films composed of the interconnected nanosheet-like structures were uniformly distributed on the surface. Electrochemical durability of the Ni-Co oxide was enhanced by increasing growth times.

1 Introduction
Hierarchical nanostructured metal oxides have been widely investigated for their morphological and electrochemical properties as electrode materials in electrochemical devices for energy storage [1,2]. In our previous study, we prepared nanosheet-like structured cobalt hydroxide (Co(OH)2) films prepared using the wet-chemical method and investigated the effects of the annealing treatment on the crystal phase and morphological property [3]. On the contrary, it was reported that the film thickness of iridium oxide (IrOx) prepared using the spray method affected the electrochemical properties [4]. Charge density and reversibility were improved as the film thickness was increased from 1200 to 3900 nm [4]. Meanwhile, the charge density of the tungsten oxide (WO3) prepared using the sol-gel was increased by increasing the certain film thickness; subsequently, it was slightly decreased owing to the grain boundaries and reaction surfaces [5].

In this study, we investigated the electrochemical performance of nanosheet-like structured nickel-cobalt (Ni-Co) oxide samples grown on fluorine-doped thin oxide (FTO)-coated glass using the simple wet-chemical method with various thin film thickness.

2 Experiment
Nickel acetate tetrahydrate (Ni(CH3COO)2·4H2O, 8 mM, Aldrich 244.66-100G), cobalt nitrate hexahydrate (Co(NO3)2·6H2O, 2 mM, Fujifilm 034-12831), and hexamethylenetetramine (HMT, C6H12N4, 5 mM, Sigma-Aldrich 398160-250G) were used without further purification [6]. An aqueous solution was stirred at room temperature for 1 h.

The FTO/glass substrate was immersed in an aqueous solution, and it was stored in an oven at 90 °C for 1—3 h. the obtained nanostructure sample was dried at 90 °C for 24 h, then annealed at 300 °C for 1 h in ambient air.

The morphological property and crystal phase of the nanostructured thin film samples were characterized using the field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD), respectively. Electrochemical properties were investigated via cyclic voltammetry (CV) in 1 M KOH electrolyte. Thin film sample, Ag/AgCl, and Pt were used as the working, reference, and counter electrodes, respectively.

3 Results & Discussion
Figure 1 (a,b) shows the FESEM images of the nanostructured samples prepared on the FTO/glass substrates. Growth time was 1 h. The nanosheet-like structures were uniformly distributed on the surface (Fig.1(a)). The film thickness was ~0.4 μm, estimated from the cross-sectional image (Fig.1(b)). As the growth time increased to 3 h (Fig.1(c,d)), the morphologies of
the nanosheet-like structures were well preserved. Distribution of the nanosheet-like structured of the sample grown for 3 h was more compact compared with that of the sample grown for 1 h (Fig.1(c)). The film thickness was increased to ~1.2 μm (Fig.1(d)). By further increasing the growth time to 6 h, the thickness of the thin film increased slightly to ~1.3 μm [6].

Figure 2 shows the XRD patterns of the nanostructured thin film samples on the FTO/glass substrate with various growth times. The diffraction peaks were observed at a 2θ position of ~26.5 °, ~33.8 °, ~38.0 °, and ~51.7 °, corresponding to the (110), (101), (200), and (211) planes of the FTO (JCPDS card No. 41-1445), respectively. This indicated that the nanosheet-like structured thin film samples are amorphous. The color of thin film samples grown for 1 and 3 h was light gray and pale yellow, respectively.

In our previous study [6], after being dried at 90 °C, the nanosheet-like structured sample was found to be composed of crystalline hydroxide. After annealing treatment at 300 °C, the phase transition from hydroxide to oxide occurred, and the nanosheet-like morphological property was well maintained.

Figure 3 shows the CV curves of Ni-Co oxide thin films prepared on FTO/glass substrates with growth time of 1 h (a) and 3 h (b). The scan rate was 50 mV/s with potential ranged between -0.15 and +0.55 V, and the area of the thin film was 1 x 1 cm. It was observed that the CV curves of both samples had a pair of redox peaks [6,7]. The CV curve area represented the charge storage capacity [5,8]. The calculated anodic (cathodic) charge density of the Ni-Co oxide grown for 1 h were 1.84 (−1.83), 3.55 (−3.52), 5.03 (−4.93), 4.90 (−4.78), and 4.77 (−4.65) mC/cm² at 100th, 300th, 600th, 800th, and 1000th cycles, respectively. By increasing the growth time to 3 h, both the anodic and cathodic charge densities increased. Maximum values were 18.18 (anodic) and −18.06 (cathodic) mC/cm² at the 800th cycle. Further increasing the CV cycle to the 1000th, the anodic and cathodic charge densities slightly decreased to 17.75 and −17.61 mC/cm², respectively. The cycle durability of the Ni-Co oxide grown for 3 h was improved compared with that of the sample grown for 1 h. On further increasing the growth time to 6 h, anodic and cathodic charge densities of 24.47 and −23.70 mC/cm², respectively, were obtained at the 1000th cycle in the potential raged between −0.20 and +0.55 V [6]. The ratio of the anodic and cathodic charge density of the Ni-Co oxide samples was closed to 1, showing high reversibility. In addition, both the Ni-Co oxide thin film samples grown for 1 and 3 h exhibited reversible color change during CV cycle.

Fig. 2. XRD patterns of bare FTO/glass substrate and nanosheet-like structured samples on FTO/glass substrates grown for 1 and 3 h.

Fig. 3. The 100th, 300th, 600th, 800th, and 1000th CV curves of the Ni-Co oxide thin films grown for 1 h (a) and (b).

4 Conclusions

The nanosheet-structured Ni-Co oxide samples were prepared on the FTO/glass substrate using the simple solution condition. By increasing the
growth time from 1 to 3 h, the thickness of thin film increased from ~0.4 to ~1.2 μm, and the nanosheet-like structures of the samples were well maintained. At CV 1000th cycle, the anodic and cathodic current densities of the Ni-Co oxide grown for 3 h were 17.75 and −17.61 mC/cm², respectively. The CV cycle durability of the Ni-Co oxide sample was improved by increasing the growth times.

Acknowledgments
This study was supported by a Grant-in-Aid for Scientific Research (c) (No.21K04149) from the Japan Society for the Promotion of Science. The authors would like to thank Mr. Susumu Tokuda of the Open Facility Center of the Kitami Institute of Technology for technical assistance with FESEM measurements.

References