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Mild cognitive impairment (MCI) is known as a group at high risk of conversion to dementia, including

Alzheimer's disease (AD). Individuals with MCI show heterogeneity in patterns of pathology, and do not

always convert to AD. Detailed subtyping for MCI and accurate prediction of the patients who convert to AD

may allow for new trial designs and may enable evaluation of the efficacy of a drug with a small number of

patients during clinical trials. In this study, we applied the heterogeneous mixture learning (HML) method to

identify subtypes of MCI. As a result, we identified eight subtypes of MCI using the HML approach and

categorized into three groups in terms of AD conversion. The identification of these subtypes revealed

varying conversion rates to AD, as well as differing levels of biological features.
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Abstract 

Mild cognitive impairment (MCI) is known as a group at high 
risk of conversion to dementia, including Alzheimer's disease 
(AD). Individuals with MCI show heterogeneity in patterns of 
pathology, and do not always convert to AD. Detailed subtyp-
ing for MCI and accurate prediction of the patients who con-
vert to AD may allow for new trial designs and may enable 
evaluation of the efficacy of a drug with a small number of 
patients during clinical trials. In this study, we applied the 
heterogeneous mixture learning (HML) method to identify 
subtypes of MCI. As a result, we identified eight subtypes of 
MCI using the HML approach and categorized into three 
groups in terms of AD conversion. The identification of these 
subtypes revealed varying conversion rates to AD, as well as 
differing levels of biological features. 
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Introduction 

Worldwide, 46.8 million people are affected by dementia, 
including Alzheimer's disease (AD), which is characterized by 
the accumulation of amyloid-beta (Aβ) protein and tau protein 
[1]. Overcoming dementia is an urgent issue because the num-
ber of affected individuals is increasing. 

Experimental drugs for AD have failed to prevent or slow 
cognitive decline in people with AD in clinical trials or have 
shown adverse effects [2]. Although those drugs did not 
demonstrate excellent clinical efficacy in patients in late-stage 
AD, they can potentially act effectively in the treatment of 
patients in early-stage AD or mild cognitive impairment 
(MCI). However, individuals with MCI show heterogeneity in 
patterns of pathology, and patients with MCI do not always 
convert to AD. Detailed subtyping for MCI and accurate pre-
diction of the patients who convert to AD may allow for new 
trial designs and may enable evaluation of the efficacy of a 
drug with a small number of patients during clinical trials. 

MCI has been classified into four subtypes by clinical diagno-
sis [3]. This classification divides MCI patients into amnestic 
or non-amnestic MCI, followed by further division into a 
group that presents a single impairment in the cognitive do-
main (single domain) or another group that shows multiple 

impairments (multiple domain). In particular, amnestic MCI, 
regardless of single or multiple domain impairments, converts 
to dementia, mainly AD, at a rate of 10% to 15% per year [4]. 
Recent studies based on neuropsychological tests also identi-
fied some subtypes of MCI [5,6]. The clinical diagnoses and 
neuropsychological tests often include subjective factors. In 
addition to the subjective factors, assessment of objective fac-
tors such as brain imaging data, biomarker data, and genomic 
data may offer subtyping of MCI that reflects a more precise 
conversion rate to AD. 

In this study, we applied the heterogeneous mixture learning 
(HML) method to identify subtypes of MCI. HML divides 
individuals into similar groups based on various datasets ob-
tained from individuals and generates appropriate predictive 
models for each group (e.g., whether an individual as input 
data is a patient with AD or a healthy individual). We charac-
terized the subtypes of MCI identified by HML and examined 
conversion to AD for each subtype over a given period. 

Materials and Methods  

Heterogeneous mixture learning 

We applied HML to obtain a decision tree for MCI subtyping. 
HML is a type of hierarchical mixture of expert model [7] that 
integrate multiple learners using a decision tree. HML divides 
individuals into similar groups based on various datasets of 
the individuals and generates appropriate predictive models 
for each group. As mentioned below, HML simultaneously 
estimates the parameters for a decision tree and the prediction 
models using the expectation–maximization (EM) algorithm. 
Using HML has several advantages: (1) The decision tree fa-
cilitates understanding of how individuals are classified into 
their subtypes. (2) The estimated weight parameters indicate 
the contribution of each variable to the prediction. 

Decision tree 

We have observation data xN = x(1), ... , x(N), where x(n) ∈ ℝD, N 
is the number of individuals, and D is the number of dimen-
sions in x. A decision tree is composed of the gating nodes as 
non-leaf nodes and the expert nodes as leaf nodes (Figure 1). 
The i-th gating node gi assigns an individual as input data x(n) 
to an appropriate expert node for prediction based on a rule 
x[γi]< ti, where γi is the index of variables of x in a gating node 
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gi, and ti is a threshold in a gating node gi. A binary logistic 
regression model is used in the expert nodes. The prediction 
model in the j-th expert node is presented as the following 
equation: 

. 

Let us denote the regression target as yN = y(1), ... , y(N), where 
y(n) corresponds to x(n), and φj indicates a vector of weight pa-
rameters in the j-th expert node. 

 

Figure 1- An example of a decision tree 

Estimation of parameters by EM-like iterative optimiza-
tion 

To obtain a decision tree model, we needed the parameters for 
the gating nodes (i.e., gi, γi, and ti) and the expert nodes (i.e., 
φ). These parameters were estimated by EM-like iterative op-
timization. HML automatically selects an optimal decision 
tree and optimal model parameters to maximize a factorized 
information criterion [8]. We first set the tree depth d. The 
maximum number of expert nodes is 2d since a decision tree is 
composed of binary trees. The estimation of parameters by 
EM-like iterative optimization is shown in Algorithm 1, where 
superscript (k) denote the k-th step, q is an evaluation function, 
and ζ is a latent variable (see [8] for a detailed description of 
these steps). q function has regularization effect, avoiding 
overfitting by some biases in the dataset. In the process of 
EM-like iterative optimization, the expert nodes with low pre-
dictive power are pruned from the decision tree, resulting in a 
more appropriate tree structure (line 4 in Algorithm 1). 

 

Condition setting 

We set the tree depth d from three to six. The EM iterative 
optimization converges to a local optimum depending on an 
initial value and is not guaranteed to converge to the global 
optimum. To avoid a local optimum, we performed 30 itera-
tions with different initial values at each depth. We adopted 
the decision tree with the best accuracy. 

Dataset 

Data used in this study were obtained from the Alzheimer's 
Disease Neuroimaging Initiative (ADNI) [9]. The ADNI was 
launched in 2003 as a public-private partnership led by Princi-
pal Investigator Michael W. Weiner, MD. The primary goal of 

the ADNI has been to test whether serial magnetic resonance 
imaging (MRI), positron emission tomography (PET), other 
biological markers, and clinical and neuropsychological as-
sessment can be combined to measure the progression of MCI 
and early AD. It contains data of a large number of cognitive 
normal, MCI, and AD subjects recruited from over 50 differ-
ent centres in the US and Canada, with follow-up assessments 
performed every 6 months. Institutional review boards ap-
proved study procedures across participating institutions. 
Written informed consent was obtained from all participants. 

This study considered the data of 898 participants, comprising 
152 patients with AD (at baseline; same hereinafter), 474 MCI 
participants, and 272 cognitively normal (CN) participants. 
All participants had cerebrospinal fluid (CSF) biomarker data, 
structural MRI data, apolipoprotein E (APOE) genotype data, 
and age at examination. These variables were basically used in 
a previous study, which performed a hierarchical clustering of 
MCI participants [10]. The patients with AD and the MCI 
participants were diagnosed mainly by neuropsychological 
tests (Mini–Mental State Examination (MMSE), Clinical De-
mentia Rating-Sum of Boxes (CDR-SB), and Wechsler 
Memory Scale Logical Memory II. For this study, we used a 
subset of the ADNI dataset called ADNIMERGE. Table 1 
shows the summary of each group. 

Table 1 – The summary of samples 

 
CSF biomarkers 

The CSF biomarkers comprised the following five markers: 
Aβ (1-42) peptide levels, total tau (tTau) protein levels, phos-
phorylated tau (pTau) protein levels, tTau/Aβ (1-42) ratio, and 
pTau/Aβ (1-42) ratio. The levels of Aβ (1-42), tTau, and pTau 
were analysed by Roche Elecsys® immunoassays. The 
tTau/Aβ (1-42) ratio and pTau/Aβ (1-42) ratio were calculated 
by the levels of the above three CSF biomarkers. CSF bi-
omarkers are quantitative variables but often represented by a 
string containing an inequality sign when the biomarker levels 
reached a ceiling or below the detection limit in immunoas-
says. Here, we treated ">1700" for Aβ (1-42) as 1,700 pg/mL 
and ">1300" for tTau as 1,300 pg/mL. Similarly, "<8" and 
">120" for pTau were transformed into 8 pg/mL and 120 
pg/mL, respectively. 

Structural MRI 

Structural MRI was used to determine the following five 
markers: whole brain volumes, ventricle volumes, hippocam-
pus volumes, entorhinal cortex volumes, and white matter 
hyperintensity (WMH) volumes. These volumes were normal-
ized as fractions of the intracranial volume (ICV). Cortical 
reconstruction and volumetric segmentation were performed 
with the FreeSurfer image analysis suite. WMHs were calcu-
lated based on coregistered T1-, T2-, and proton density (PD)-
weighted structural MRI images. 

APOE genotype 

APOE genotyping was analysed from DNA samples of each 
participant’s blood cells using an APOE genotyping kit. APOE 
includes 3 alleles (ε2, ε3, ε4) and 6 genotypes (ε22, ε23, ε24, 
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ε33, ε34, ε44). We used the number of ε4 alleles, which is 
known as a risk factor for AD. 

Test performance 

We used the dataset from the patients with AD and the CN 
participants as training data to determine a decision tree and 
model parameters by HML. The dataset from the MCI partici-
pants was used as test data. A decision tree model generated 
from the training data classified the MCI participants into pa-
tients with AD (the predicted ADs) or CN participants (the 
predicted CNs). For test performance, the predicted ADs who 
converted to AD within three years were defined as true posi-
tives (TP). The predicted ADs who did not convert were de-
fined as false positives (FP). In the same way, the predicted 
CNs who converted to AD within three years and those who 
did not convert were defined as false negatives (FN) and true 
negatives (TN), respectively. We calculated sensitivity, speci-
ficity, precision, and accuracy using the four outcomes as fol-
lows: 

Sensitivity = TP / (FN + FP) 

Specificity = TN / (FP + TN) 

Precision = TP / (TP + FP) 

Accuracy = (TP + TN) / (TP + FP + TN + FN) 

The AD conversion in each MCI participant is presented as 
time-to-event data that is the number of days from age at base-
line to age at onset. In this study, we defined the MCI partici-
pants who did not convert within three years as censoring da-
ta. The log-rank test was performed to evaluate the difference 
in conversion between the predicted ADs and the predicted 
CNs. 

Strength of exacerbation in each variable 

Linear regression analysis was used to examine the speed of 
temporal change in each variable in each MCI subtype sepa-
rately, controlling for gender and total years of education as 
follows: y = β0 + βMonth·Month + βGender·Gender + βEduca-

tion·Education+ ε, where y indicates the variable (e.g., CSF Aβ 
(1-42)), β indicates the regression coefficients, and ε is the 
residual. The term Month is the total months from baseline. 
Intuitively, βMonth shows the speed of increasing (when βMonth is 
positive) or decreasing (when βMonth is negative) the levels of 
each variable. We then calculated sign-modified standardized 
regression coefficients to express the strength of exacerbation 
of each variable across three years using βMonth. The standard-
ized regression coefficients were obtained from linear regres-
sion analysis after transforming all variables into Z-scores. We 
changed the sign of standardized regression coefficients to 
positive when a negative coefficient represented the exacerba-
tion of symptoms. 

Results 

Test performance of a decision tree model 

We inputted 152 patients with AD and 272 CN participants as 
training data for HML and generated the decision tree models. 
To explore optimal parameters, we tried four depths of deci-
sion trees and generated 30 models that were estimated by 
different initial values in the EM algorithm with settings at 
each depth (see Materials and Methods). We next applied the 
data from 474 MCI participants as the test data to the 120 
models (= 4 depths × 30 models). The decision tree model that 
showed the best accuracy of all 120 models showed a sensitiv-

ity of 0.766, a specificity of 0.754, a precision of 0.568, and an 
accuracy of 0.757. This model was composed of seven gating 
nodes and eight experts (Figure 2). The performances of each 
expert are shown in Table 2. We also calculated the perfor-
mances using single variables. As a result, the accuracy was 
highest with the pTau/Aβ (1-42) ratio, 0.719 (Table 3). These 
results indicated that the integration of multiple variables pro-
vided greater prediction. 

This decision tree model with the best accuracy predicted the 
190 of the MCI participants as AD (the predicted ADs) and 
284 of the MCI participants as CN (the predicted CNs). We 
performed survival analysis to compare the conversion rates to 
AD between the predicted ADs and the predicted CNs. The 
predicted ADs progressed to AD over three years from base-
line at a higher percentage (56.8%; 108/190) than the predict-
ed CNs (11.6%; 33/284) (Figure 3). 

 

 
Figure 2- The decision tree model 

 
Table 2 - Test performance of the HML algorithm. 

 
 

Table 3 - Test performance base on single variables. 
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Figure 3- Conversion rates from MCI to AD in the predicted 
CNs (red) and the predicted ADs (green) over the measure-
ment period. The Kaplan–Meier curves show the conversion 
patterns in all the MCI participants (the predicted ADs, 190 
individuals; the predicted CNs, 284 individuals; p = 2.69e-29 
in the log-rank test). 

The characteristics in each subtype 

The individuals included in an expert on a decision tree are a 
group of individuals with similar features. We then considered 
the MCI participants who were classified into a specific expert 
as one subtype. The MCI participants were divided as follows: 
14 participants in subtype 1; 28 in subtype 2; 100 in subtype 
3; 41 in subtype 4; 68 in subtype 5; 79 in subtype 6; 76 in sub-
type 7; and 68 in subtype 8. We compared the conversion rates 
of the MCI participants to AD in each subtype to characterize 
each subtype (Figure 4A). The Kaplan–Meier curves showed 
different conversion patterns in each subtype. Half or more of 
the MCI participants in subtypes 1, 5, and 8 progressed to AD 
within three years (Figure 4B). On the other hand, the conver-
sion rates in subtypes 4, 6, and 7 were moderate, more than 
25%. Subtypes 2 and 3 had comparatively low conversion 
rates. 

To provide a more detailed characterization of each subtype, 
we compared the levels of the 12 variables among the sub-
types (Figure 5). Subtypes 2 and 3 showed high levels of CSF 
Aβ (1-42) (Figure 5A), suggesting low aggregation of Aβ in 
the brain. The levels of CSF tau (CSF tTau, CSF pTau, 
tTau/Aβ (1-42) ratio, and pTau/Aβ (1-42) ratio), which indi-
cate the degree of neuronal death in tauopathy, were high in 
subtypes 5 and 6 (Figure 5B-E), consistent with the structure 
of the decision tree. Interestingly, although subtype 1 did not 
have upstream gating nodes associated with tau on the deci-
sion tree, the levels of tau were high. Subtypes 7 and 8 had 
high ventricle volumes, suggesting brain atrophy (Figure 5F). 
These subtypes also had low levels of the hippocampus and 
whole brain volumes in accordance with enlargement of the 
ventricles (Figure 5G, H). Low level of the entorhinal cortex 
volumes was observed in subtypes 5 and 8 (Figure 5I). Re-
garding WMH volumes that reflect white matter lesions by 
cerebral ischaemia, there were no differences among the sub 
types (Figure 5J), implying that most MCI participants in this 
study did not present with vascular dementia. The top gating 
node in the decision tree stratified the MCI participants by 
age. Therefore, subtypes 1 and 2 included younger MCI par-
ticipants than the other subtypes (Figure 5K). Not surprisingly, 
the MCI participants in subtype 7 did not have APOE ε4 al-
leles, which is a genetic risk factor, and all of the participants 
in subtype 8 had one or more APOE ε4 alleles because sub-
types 7 and 8 had a gating node with APOE ε4 alleles (Figure 
5L). On the other hand, many of those in subtype 3 did not 
have APOE ε4 alleles regardless of the absence of a gating 
node with APOE ε4 alleles, likely explaining the low conver-
sion rate of subtype 3. 

The spot matrix in Figure 6 more clearly visualizes the differ-
ence among the subtypes. Most of those in subtype 1 demon-
strated both Aβ and tau abnormalities in the CSF biomarkers. 

There were no abnormal features in subtypes 2 and 3. Sub-
types 4, 6, and 7 showed similar characteristics to the AD pa-
tients in CSF Aβ (1-42), CSF tau, and whole brain volumes, 
respectively. Subtypes 5 and 8 had abnormalities in CSF bi-
omarkers and some brain atrophy. They were most severe 
among the subtypes, consistent with the high conversion rate 
shown in Figure 4. 

 
Figure 4- Conversion in each subtype. (A) The Kaplan–Meier 
curves in each subtype (p = 2.30e-34 in the log-rank test). (B) 
The conversion rate within three years in each subtype. 

 
Figure 5- Features in each subtype: (A) CSF Aβ (1-42), (B) 
CSF tTau, (C) CSF pTau, (D) tTau/Aβ (1-42) ratio, (E) 
pTau/Aβ (1-42) ratio, (F) normalized ventricle volume, (G) 
normalized hippocampus volume, (H) normalized whole brain 
volume, (I) normalized entorhinal cortex volume, (J) normal-
ized WMH volume, (K) age, and (L) APOE. Orange and blue 
dots represent the predicted ADs and CNs, respectively. Blue 
and red lines indicate the cutoff values based on the CN par-
ticipants and the AD patients. Plots below a blue line or above 
a red line represent levels similar to the AD patients. 
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Figure 6- Spot plot showing the proportion of individuals with 
features similar to AD patients. Spot size represents the pro-
portion of individuals who exceeded the cutoff value. Yellow 
spots indicate more than 50%. 

Trajectory analysis 

Finally, we examined the trajectories of the five CSF bi-
omarkers and the four brain volumes over three years and 
compared the strength of exacerbation in each feature in each 
subtype (see Materials and Methods). Of the 474 MCI partici-
pants, 354 (74.7%) were followed for three years in the ADNI. 
In this analysis, subtypes 1 and 4 showed prominent exacerba-
tion in the CSF biomarkers, specifically CSF tau (Figure 7A). 
Rapid exacerbation of the CSF biomarkers in subtype 1 may 
relate to the high conversion rate shown in Figure 4. Although 
subtype 4 also showed rapid exacerbation in CSF biomarkers, 
the conversion rate was moderate, suggesting that some of the 
subtype 4 progressed to other forms of dementia and not AD. 
The CSF biomarkers in subtype 5 were stable for three years. 
The levels of CSF Aβ (1-42) and tau in subtype 5 may have 
sufficiently reached the levels observed in AD because most 
of those in subtype 5 showed abnormalities of Aβ (1-42) and 
tau at baseline (Figures 5A-E and 6). On the other hand, pro-
gressions in atrophy of all brain regions were observed (Figure 
7B). This fact confirmed the high conversion of subtype 5 
(Figure 4). Typical AD first shows abnormalities in CSF Aβ 
(1-42) and tau that subsequently leads to brain atrophy [10]. 
Therefore, it would appear that subtype 5 includes MCI partic-
ipants who were likely to convert to typical AD. The strength 
of exacerbation of brain volume measures in subtypes 2 and 3 
was low, consistent with low conversion rates (Figure 4). 

 
Figure 7- The strength of exacerbation of CSF biomarker ab-
normalities (A) and brain atrophy (B) across three years. Pos-
itive and negative coefficients indicate exacerbation and re-
mission, respectively. 

Discussion 

We constructed a decision tree model to predict the conver-
sion of MCI to AD within three years via the HML approach. 
The decision tree model from HML, which integrates multiple 
prediction models for different MCI groups derived based on 
the characteristics of that data, presented a higher level of ac-
curacy than models using single variables. Additionally, we 
identified various subtypes of MCI based on the MCI sub-
groups classified by HML. The identification of these sub-
types revealed varying conversion rates to AD, as well as dif-
fering levels of CSF biomarkers and brain atrophy. The MCI 
participants were mainly categorized into three groups in 
terms of AD conversion: subtypes similar to CN participants 
with low conversion rates (subtypes 2 and 3); subtypes with 
intermediate conversion rates and with any one of CSF Aβ 
abnormalities, CSF tau abnormalities, or brain atrophy (sub-
types 4, 6, and 7); and subtypes similar to AD with high con-
version rates (subtypes 1, 5, and 8). 

Among the three subtypes with high conversion rates, sub-
types 5 and 8 showed both CSF biomarker abnormalities and 
brain atrophy. On the other hand, subtype 1 had abnormalities 
of CSF Aβ (1-42) and tau, whereas it did not show pro-
nounced brain atrophy. One difference between these subtypes 
was that the average age of subtype 1 was relatively young, 
57.9 years old (Figure 5K and 6). Furthermore, the trajectory 
analysis across three years exhibited a rapid worsening of CSF 
biomarkers and brain atrophy in subtype 1, suggesting that 
early abnormalities in CSF biomarkers led to a more rapid 
progression of pathology. 

The three subtypes with intermediate conversion rates were 
likely associated with mixed pathologies. Subtype 4 had an 
abnormality of CSF Aβ (1-42) at baseline (Figures 5A and 6) 
and subsequently showed increased tau levels (Figure 7A). 
These tendencies coincided with observations that changes in 
CSF Aβ (1-42) typically precede CSF tau abnormalities, fol-
lowed by neurodegeneration and cognitive decline [11]. Sub-
type 6 presented abnormalities in CSF tau, although CSF Aβ 
(1-42) was nearly normal. The trajectory analysis also did not 
show increasing CSF Aβ (1-42). Subtype 6 may have included 
MCI participants with suspected non-Alzheimer disease path-
ophysiology (SNAP) that is marked by neurodegeneration 
without Aβ deposition within the brain [12]. The tTau is used 
as a biomarker for neurodegeneration [13]. However, the tau 
levels in our study were measured only in CSF. To further 
elucidate these factors, we need to incorporate measurements 
reflecting tau accumulation within the brain, such as tau PET. 
Subtype 7 was characterized by enlargement of the ventricles 
without CSF biomarker abnormalities. Additionally, the MCI 
participants in subtype 7 did not have one or more APOE ε4 
alleles that are known to be strong genetic risk factors for AD. 
In the AT(N) system for classifying AD, where A is amyloid, 
T is tau, and N is neurodegeneration [13], these MCI partici-
pants corresponded to A-T-N+ and were consistent with non-
AD pathologic changes. One of the pathologies of non-AD 
pathologic changes, such as A-T-N+, that can be considered is 
limbic-predominant age-related TDP-43 encephalopathy 
(LATE) [14]. The stratification of participants with MCI using 
biomarkers for other neurodegenerative diseases, including 
TDP-43 protein, would provide clarity regarding the heteroge-
neity of MCI. 
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Conclusion 

In this study, we demonstrated that HML is useful for the clas-
sification of MCI participants. Our study found some subtypes 
similar to typical AD and identified subtypes likely to convert 
to other neurodegenerative diseases. These findings imply that 
adding other pathological information can more precisely pre-
dict the onset or progression of a wide variety of neurodegen-
erative diseases. Moreover, we developed the decision tree 
model to predict conversion to AD. Although there is room for 
improvement in overall performances, focusing on specific 
subtypes that can predict conversion to AD more accurately 
(e.g., subtype 2 with high precision) and targeting those with 
MCI that were classified as AD by the prediction model of 
that subtype (i.e., the predicted ADs) could enable more effi-
cient clinical trials. 
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