Development of a continuous measurement system of PANs and alkyl nitrates in the atmosphere and observations at Suzu, th

TAKAJI, Ryo1; ISHIYAMA, Ayana1; SADANAGA, Yasuhiro1; MATSUKI, Atsushi2; SATO, Keiichi3; OSADA, Kazuo4; BANDOW, Hiroshi1

1Osaka Prefecture University, 2Kanazawa University, 3Asia Center for Air Pollution Research, 4Nagoya University

Peroxyacyl nitrates (PANs) and alkyl nitrates (ANs) are generated in the atmosphere by oxidation of NO\textsubscript{x} in the presence of solar ultraviolet. They have a comparatively long lifetime, and are important as transboundary air pollutants. On the other hand, PANs and ANs act as the reservoirs of NO\textsubscript{x}. In order to clarify transboundary pollution of nitrogen oxides, comprehensive measurements of total odd nitrogen species (NO\textsubscript{y}), including PANs and ANs, are required. In this research, a continuous measurement system of total PANs and ANs has been developed by a thermal dissociation / cavity attenuated phase shift spectroscopy (TD/CAPS) method.

This instrument consists of heated quartz tubes to decompose PANs and ANs into NO\textsubscript{2}, and a CAPS-NO\textsubscript{2} analyzer. This system has three intake lines; NO\textsubscript{2}, PANs and ANs lines. The NO\textsubscript{2} line equip of a quartz tube without heating. The PANs and ANs line equip quartz tubes heated at 433 K and 633 K, respectively for thermally decomposing them into NO\textsubscript{2}. Concentrations of NO\textsubscript{2}, NO\textsubscript{2} + PANs and NO\textsubscript{2} + PANs + ANs can be obtained from the NO\textsubscript{2}, PANs and ANs lines, respectively. These concentrations are sequentially measured by switching solenoid valves and then NO\textsubscript{2}, PANs and ANs concentrations are obtained. Since a part of HNO\textsubscript{3} is pyrolyzed in the ANs line, annular denuder coated with NaCl to remove HNO\textsubscript{3} is set before the heated quartz tube in the ANs line. The decomposition efficiencies of PANs and ANs were calibrated to be 100 and 95\%, respectively, for all kinds of PANs and ANs examined.

Continuous field observations of PANs and ANs have been being performed at NOTOGRO (Noto ground-based Research observatory) supersite in Suzu, the Noto Peninsula, since November 2012. Continuous measurements of NO\textsubscript{x}, NO\textsubscript{y}, T.NO\textsubscript{3} (the sum of gaseous nitric acid and particulate nitrate) O\textsubscript{3}, and CO have also been being conducted. NO\textsubscript{y} concentrations were in agreement with the sum of observed NO\textsubscript{y} components (= NO\textsubscript{x} + T.NO\textsubscript{3} + PANs + ANs) regardless of seasons. NO\textsubscript{x} fractions were the highest in NO\textsubscript{y} constituents. Fractions of T.NO\textsubscript{3} in January and February were lower than those in other months. This reflects that wet deposition of T.NO\textsubcript{3} would be accelerated in winter due to snowfall. On the other hand, PANs fractions in spring and summer were smaller than those in winter. This suggests that temperature increasing promotes decomposition of PANs.

Keywords: peroxyacyl nitrates (PANs), alkyl nitrates, total odd nitrogen species, cavity attenuated phase shift spectroscopy