Japan Geoscience Union Meeting 2014 (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. AAS22-P30 Room:Poster Time:May 1 18:15-19:30 ## Measurement of CO2 stable isotope ratio by mid-inferred laser absorption spectrometry; analysis of CO2 cycle in urban YUBA, Akie 1* ; TAKAHASHI, Kenshi 2 ; NAKAYAMA, Tomoki 1 ; MATSUMI, Yutaka 1 ¹Solar-terrestrial environment laboratory, Nagoya university, ²Research Institute for Sustainable Humanosphere, Kyoto University CO_2 concentration has been increasing from the range of 275 ppmv (parts per million by volume) to 285 ppmv in the previous industrial period to about 400 ppmv in 2013. IPCC reported that CO_2 has the most effective on the positive radiative force. The insight of CO_2 emission and absorption flux helps us to estimate the variation of radiative forcing and atmospheric environment. CO_2 concentration changed with the anthropogenic and biogenic emission and absorption. The stable isotope ratio of CO_2 ($\delta^{13}C$ and $\delta^{18}O$) is associated with the CO_2 source such as combustion and biogenic respiration. The contribution of each CO_2 source in the urban area was estimated by using the stable isotope ratio of CO_2 . We conducted the continuous measurement for CO_2 concentration and stable isotope ratio of CO_2 using the mid-inferred absorption spectrometry which can obtain CO_2 concentration and its isotope ratio with high time resolution. The water vapor and stable isotope ratios of water vapor (δD and $\delta^{18}O\text{-H}_2O$) were measured to show the relationship between H_2O and CO_2 due to the isotopic exchange reaction. CO and NO_x concentrations were obtained as a tracer of anthropogenic emission. The measurement was conducted for two weeks in summer and winter. The seasonal variation of CO_2 source was shown according to the comparison of CO_2 concentration and stable isotope ratio. Especially, we focused on the contribution of biogenic process to CO_2 concentration variation in the urban area. CO_2 concentration and stable isotope ratio of CO_2 in the summer showed the diurnal variation. On the other hand, those in the winter had no diurnal variation. CO_2 concentration variation in the winter was correlated with CO concentration variation. These results suppose that CO_2 concentration variation in the winter was mainly dominated by the anthropogenic emission and that in the summer was related with biogenic process as well as anthropogenic emission. We will discuss the relationship between stable isotope ratio and meteorological condition or water vapor isotope ratio to identify the detail of CO_2 source. Keywords: CO2 stable isotope ratio, Urban area, CO2 cycle, mid-interred laser absorption spectrometory