Japan Geoscience Union Meeting 2014 (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved.

ACC32-06

Time:April 29 15:30-15:45

A long-term ¹⁰Be record from Dome Fuji ice core and cosmic-ray stratigraphy

HORIUCHI, Kazuho^{1*}; SUGUCHI, Shota¹; SUDA, Kensuke¹; UCHIDA, Tomoko²; AZE, Takahiro³; YOKOYAMA, Yusuke⁴; MURAMATSU, Yasuyuki⁵; MATSUZAKI, Hiroyuki⁶; MOTOYAMA, Hideaki⁷

¹Graduate School of Science and Technology, Hirosaki University, ²Institute of Geology and Paleontology, Tohoku University, ³Graduate School of Science and Engineering, Tokyo Institute of Technology, ⁴Atmosphere and Ocean Research Institute, The University of Tokyo, ⁵Faculty of Science, Gakushuin University, ⁶Graduate School of Engineering, The University of Toky, ⁷National Institute of Polar Research

Cosmogenic nuclides (¹⁰Be, ¹⁴C, ²⁶Al, ³⁶Cl) in paleoenvironmental archives serve as a proxy indicator of the paleointensity of cosmic ray, controlled largely by the strength of the solar/geomagnetic fields. Here, we present a millennial record of cosmogenic ¹⁰Be covering the past 300 kyr and obtained from ice cores drilled at the Dome Fuji station (77°19'S, 39°42'E), inland East Antarctica. A number of specific increases in ¹⁰Be were observed in this record and were connected semi-quantitatively to those in the cosmic-ray intensity caused by geomagnetic excursions during the last 300 kyr. These features can be used as stratigraphic time-markers for synchronization of not only Antarctic ice cores but also various paleoenvironmental archives such as deep-sea sediments