Utility of nitrogen isotopic composition of amino acids in shell protein

CHIKARAISHI, Yoshito1*; NOMAKI, Hidetaka1; TSUCHIYA, Masashi1; TOYOFUKU, Takashi1; OHKOUCHI, Naohiko1; KITAZATO, Hiroshi1

1Japan Agency for Marine-Earth Science and Technology

Stable isotopic composition of sedimentary organic nitrogen has been employed as a proxy to understand biogeochemical nitrogen cycles in marine and lacustrine environments. However, modification of the isotopic signals during early diagenesis (including heterotrophic assimilation/disassimilation, recycling, and reproduction) in water column and sediments always leads to much uncertainty on the interpretation of bulk isotope data. Recently, we found that a proteinogenic amino acid, phenylalanine, shows little change in the nitrogen isotopic composition during heterotrophic degradation even in long-length grazing food webs, whereas the other proteinogenic amino acid, glutamic acid, shows significant 15N-enrichment at each step of food webs. Moreover, the isotopic signals of these amino acids in shell protein are always identical to those of biomass protein (e.g., muscle tissue) when the shell was produced. These results imply that the nitrogen isotopic composition of phenylalanine and glutamic acids from shell protein (e.g., in microfossils of foraminifera) captures (1) primary isotopic signals of organic nitrogen in the environment where the shell was produced and (2) trophic position of the shell-owner in ecosystems when the shell was produced.

In the presentation, we will show comparative data sets on the isotopic composition of amino acids between muscle and shell protein from various organisms, and discuss its applicability as a proxy to estimate the primary isotopic signals in environments and the trophic position of organisms of interest.

Keywords: amino acid, nitrogen isotope, food web