Japan Geoscience Union Meeting 2014 (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.

BPT23-19

Room:411

The first recovory of impact-shocked zircons from the Jack Hills metasedimentary rocks, Western Australia

YAMAMOTO, Shinji^{1*}; KOMIYA, Tsuyoshi¹

¹Department of Earth and Astronomy, Graduate School of Arts and Sciences, The University of Tokyo

The first 500 million years of the Earth history remain poorly understood because terrestrial rock records during Hadean era (>4.0Ga) are scarcely preserved, probably due to surface and/or tectonic erosion and intense meteorite bombardment. The Late Heavy Bombardmend (LHB) is the period from ca. 3.85-3.95, an intense flux of asteroidal bodies into inner solar system originally proposed to have impacted the Moon. To date, the oldest impact structure on the Earth is the 2.02 Ga Vredefort Dome, South Africa, and another oldest evidence of bolide impact is 3.47-3.24 Ga spherule layers in the Barberton Greenstone Belt, South Africa (e.g. Lowe et al., 2003). The impact chronology from these spherule layers suggest that the impactor flux was significantly higher 3.5 Ga than today (Jhonson & Melosh, 2012).

Geological conditions during Hadean era can be deduced from detrital zircon grains as old as 4.4 Ga preserved in metasedimentary rocks at Jack Hills in the Narryer Gneiss Complex, Western Australia (e.g. Compston & Pidgeon, 1986; Wild et al., 2001). Jack Hills metaconglomerates deposited in ca. 3 Ga contain detrital zircons with ages continuously spanning from 3.0 to 4.4 Ga. Previous investigations of these grains have suggested the existence of a thermal excursion during LHB era (Abbott et al., 2012; Bell and Harrison, 2013), but temperature approach of detrital zircons do not restrict impact-related heating.

Here, we first report zircons with shock-induced textures, such as granular (polycrystalline) texture, from the Jack Hills metaconglomerate. Granular-textured zircons have been frequently reported from impact ejecta layers and craters, such as K-Pg boundary, the Chicxulub crater (e.g. Bohor et al., 1993; Krogh et al., 1993) and also from shock experiments (Wittmann et al., 2006). Polycrystalline zircon grains recovered from the Jack Hills metaconglomerates represents several micro-meter sized crystallites of zircon in a glassy ZrSiO4 matrix that may resulted from shock-induced amorphization and subsequent recrystallization (Witmann et al., 2006). Several grains show the granular texture with abundant micro-vesicles and tiny ThSiO4, suggesting incipient melting and vaporization. The first recovery of shock-induced zircons from the Jack Hills metaconglomerate would provide significant clues on the early Earth environment and on constructions/destructions of Earth early crust.

Keywords: early Archean, Hadean, Jack Hills, zircon, shock metamorphism