Sr-Nd-Pb isotopic compositions of hot spring water in the Toyoha Mine, Hokkaido Japan: Implications for the origin of hy

NAKAMURA, Hitomi1; IWAMORI, Hikaru2; ARAKI, Shuhei3; HIEDA, Yuki3; FUJINAGA, Koichiro3; KATO, Yasuhiro3; NAKAI, Shun’ichi4; KIMURA, Jun-ichi2; CHANG, Qing2

1Titech, 2JAMSTEC, 3Univ. of Tokyo, 4ERI, Univ. of Tokyo

Chemistry and dynamics of slab-derived fluids in subduction zones have been rigorously studied by high pressure experiments, geochemical and hydrological modelling, and geophysical observations [1-5]. Surface manifestation of deep slab-derived fluids are now suggested by geochemistry, such as slab fluid-like chemical affinities found in volcanic rocks [6,7] and in hot spring waters [8]. In this study, we aim to examine the presence (or absence) of slab derived fluid signatures in hot spring water related with the Toyoha Mine ore deposits in Hokkaido, one of the largest hydrothermal vein-type deposits in Japan. We applied Sr-Nd-Pb isotope analyses of the hot spring water and compared the results to those from the volcanic rocks and the ore minerals from the Toyoha Mine.

For this purpose, we have examined a ferric co-precipitation pre-concentration method for the hot spring water from the Toyoha Mine. This was necessary because the abundances of Nd and Pb were very low, less than several ppb for Nd, in particular. The method has previously been applied to brines with high chlorine concentration at Arima hot spring [9], and the method worked well with the Toyoha hot spring water. The concentrated sample has been analyzed by Q-ICP-MS and MS-ICP-MS for both element abundances and Sr-Nd-Pb isotopic compositions. We examined origin of the hot spring water by using Sr-Nd-Pb isotope systematics in comparison with the data from the ore deposit, volcanic rocks related with the ore deposition, and the basement rocks of the Toyoha Mine. A recent study has shown that Sr-Nd-Pb isotopic ratios of sulfide ores in the Toyoha Mine exhibit a high contribution of slab-derived fluid from the Pacific Plate slab [10]. Our preliminary results on the hot spring water suggest that the water may also preserve the slab-fluid signatures and/or may also be affected by the chemical components in the basement rocks.


Keywords: hot spring, isotope, Toyoha, mine, ore