A global ocean oxidation event immediately after the Early Triassic thermal maximum

KAIHO, Kunio1+ ; TAKAHASHI, Satoshi2 ; GORJAN, Paul3 ; CHEN, Zhong-qiang4 ; TONG, Jinnan4

1Tohoku University, 2University of Tokyo, 3Washington University, 4China University of Geosciences

Biotic recovery after the largest mass extinction at the end of the Permian (252.3 million years ago, Ma) became evident in early Spathian (250.1 Ma), Early Triassic, and was eventually completed in middle-late Anisian (ca. 244 Ma), early Middle Triassic. Recent studies showed that this much delayed recovery was impacted by several biocrises and associated environmental and climatic stresses during the Early Triassic. For instance, the end-Smithian extinction and associated thermal maximum and Smithian oceanic anoxia may have prevented biotic recovery initiated in early Smithian (251 Ma). Our new study not only confirmed the oceanic anoxia in late Smithian but also found an oxygenation event just after the Smithian thermal maxima (STM) using sulfur isotope fractionation between sulfate and sulfide. Newly obtained sulfur isotope ratios of carbonate-associated sulfate (d34SCAS) in the surface water and sulfide (d34Ssulfide) in the Panthalassic deep water during the late Permian to the Early Triassic compiled with published data show a significant increase in fractionation between the d34SCAS and d34Ssulfide during the early Spathian (41-51 permil to 62 permil). The latter indicates an increase in global oceanic dissolved oxygen levels, which also coincided with a climatic cooling and may have facilitated biotic recovery in late Early Triassic.

Keywords: Early Triassic, ocean dissolved oxygen, sulfur isotope