Japan Geoscience Union Meeting 2014 (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved.

BPT27-05

Room:213

Time:April 28 14:30-14:45

Cyanobacterial proliferation during the Early Triassic

SAITO, Ryosuke^{1*}; KAIHO, Kunio¹; OBA, Masahiro¹; TONG, Jinnan²; CHEN, Zhong-qiang²; TAKAHASHI, Satoshi³; CHEN, Jing²

¹Institute of Geology and Paleontology, ²Institute of Geology and Paleontology, ³Institute of Geology and Paleontology, ⁴China University of Geosciences, ⁵China University of Geosciences, ⁶Department of Earth and Planetary Science, University of Tokyo, ⁷China University of Geosciences

Recent studies have shown that microbes bloomed in the aftermath of several major Phanerozoic biocrises. Microbial proliferation, as indicated by widespread microbialites, characterized marine ecosystems after the end-Permian mass extinction, which constituted the most severe biocrisis for life on Earth. The microbialite builders, including cyanobacteria and other unknown microalgae or bacteria, acted as primary producers in the trophic structure of the earliest Triassic marine ecosystem. However, the stratigraphic distributions of cyanobacteria and eukaryotic algae during the Permian?Triassic transition remain unknown. Thus, we conducted studies for the interval from the latest Permian to the Middle Triassic using the monomethyl heptadecane ratio (MHR) and 2-methyl hopane index (2-MHI) as cyanobacterial proxies, and the n-alkyl-cyclobenzene ratio (ACBR) as a biomarker for eukaryotic algae. We detected a proliferation of eukaryotic algae during the latest Permian and early Middle Triassic, whereas cyanobacteria flourished during most of the Early Triassic. The new findings are consistent with previously determined stratigraphic distributions of microbialites and the species richness of eukaryotic algae. The erosion intensity and temperature fluctuated in conjunction with changes in the populations of cyanobacteria and eukaryotic algae. Therefore, we postulate that these population changes were primarily the result of enhanced water turbidity from elevated bedrock erosion and lethally hot temperatures.

Keywords: biomarker, Early Triassic, extinction, cyanobacteria