Paleogeography of the Earth; Neoproterozoic

MARUYAMA, Shigenori1 ; ISOZAKI, Yukio2

1ELSI Tokyo Institute of Technology, 2University of Tokyo

Neoproterozoic Earth was a transient state to bridge Precambrian mono-cellular world to Phanerozoic Earth of metazoans and plants. The snowball Earth from 770Ma to the onset of Cambrian time, was another environmental pressure to force the life evolution.

(1) Continent configuration
Supercontinent Rodinia was consolidated ca. 1.0Ga around the equatorial region, and began to be rifted in Neoproterozoic. After ca.600Ma, it became fragmented by rising superplume in the center to give a birth of Pacific Ocean. Immediately after the fragmentation, continents were removed to the South Pole to assemble again to make a semi-supercontinent Gondwana by 540Ma.

(2) Environmental change
Owing to the leaking Earth (Maruyama and Liou, 2005; Maruyama et al., 2014), the rapid emergence of huge landmass caused the rapid diversification of surface environment and birth of metazoans, as well as algae evolution. Preceding to the Cambrian explosive evolution of life, the snowball Earth event which was a warm-cold fluctuation, GCR-triggered cloud cover, rapid sea-level change, nutrients supply, and probably wet and dry climate change, forced the rapid evolution of life. The first appearance of sponge was between Sturtian and Marinoan snowball Earth event, but the most explosive diversification of metazoans occurred between 540 and 520Ma.

Chemostратigraphy more than 10 were completed for the drilled cores in S. China and the detailed environmental changes were analyzed (Special issue in GR, 2014). Weakened paleomagnetic intensity caused severe radiation for the evolving life on the surface of the Earth.

(3) Life-evolution and mass extinction
By this reason, and presumably the rift volcanism related to atomic bomb magma caused local mass extinction to promote mutation-induced quick evolution to diversify life.

(4) Biomass, Ecosystem, mass extinction
Sr isotopic change recorded in platform carbonate clearly indicate the huge amount of nutrients supply for continents and sea-level drop caused the birth of paradise of metazoans on the continental visible platform with enough nutrients supply. A new diversified ecosystem was appeared.

The most extensive mass extinction occurred during the Ediacaran to Cambrian time, more than 10 times in this restricted period, from 635Ma to 488Ma.

(5) Role of Universe
This could be due to the starburst in our Milky Way Galaxy, and promoted volcanic eruption of atomic bomb magma along the continental rifts on the Rodinia and Gondwana.