Phanerozoic biodiversity change: Extinction and diversification

Convener:*Yukio Isozaki (Department of Earth Science and Astronomy, Multi-disciplinary Sciences - General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo), Yusuke Sawaki (Tokyo Institute of Technology), Tomohiko Sato (Graduate School of Arts and Sciences, The University of Tokyo), Chair: Yukio Isozaki (Department of Earth Science and Astronomy, Multi-disciplinary Sciences - General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo)

Mon. Apr 28, 2014 4:15 PM - 6:00 PM  213 (2F)

Biotic evolution was the consequence of repeated extinction and following diversification in the past, which was caused by large-scale environmental changes, in particular, by extremely rapid and drastic forcing that changed the environments of the biosphere. Irreversible and episodic changes in material cycling on the planet and in galactic cosmic radiation are nominated as major driving mechanism for the alleged rapid, large-scale environmental perturbations. The biodiversity change in the fossiliferous Phanerozoic record is characterized by 5 major mass extinctions within the long-term trend of diversity increase. Nonetheless, each extinction event has been explained rather in ad hoc manner, without any universal explanation. Lately, the supply of essential element/material has emerged as a significant factor that determined the past evolution course. This session discusses the Phanerozoic biodiversity change under a new light of the recent progress in geology.

5:45 PM - 6:00 PM

Global paleogeography and life evolution: 1. Cenozoic

3-min talk in an oral session


Keywords: paleogeography, Cenozoic, Pacific Ocean, land bridge, evolution

Continental configuration in the Phanerozoic were synthesized, by the integration of not only continents and oceans, but also, plates, ridge-transform system, ocean current, desert, glacier, major rivers, plume-driven bulge, rifts, mountain belts, lakes, vegetation, and the location of first fossils appeared on the Earth. Methods employed here are as follows; plate reconstruction after Scotese (1996, 2002, 2008), for the oceans by Engebretson et al. (1985; 1992), Cogne and Humler (2006), and Seton et al. (2012), and OIB by Utsunomiya et al. (2008). The Earth system has been changed drastically at 20 Ma under the strong influence by the internal phenomena of solid-Earth, in particular, by the generation of 410 km-depth swarm of hydrous plumes immediately above the "2nd continents". The Cenozoic is clearly divided into the two periods at ca. 20 Ma on the basis of the secular change in seawater Sr isotopic composition (Veizer et al., 1999). This sharp change reflects the increased material flux from continental crusts to ocean by the plume-driven topographic elevations and collision orogeny along the Himalayan-Tethyan domain all the way from Europe to Papua New Guinese. It should be emphasized that the former is nearly 10 times greater in magnitude than the latter. The uplifted regions include Tibet-East Asia, Rocky Mtn./Colorado plateau/Basin-and-Range/Rio Grande Rift in North America, and Middle America. The A-subduction of the main S. America block caused the uplift of the Andean Mtn. The separation of S. America from Antarctica was critical to have isolated Antarctica around the South Pole to have triggered the glaciation by virtue of cold-water circulation around the Antarctica. The rapid glaciation
both in Arctic and Antarctica started the Quaternary Period at 1.8 Ma, although the Cenozoic glaciation had already started on Antarctica back to 20 Ma. The ultimate cause of the Quaternary glaciation can be blamed to the encounter of our galaxy with a small "dark cloud" since 20 Ma, and to that with nearby supernovae since 1.8 Ma. The low-temperature on the planet surface and the resultant glaciation was triggered likely by the increased galactic cosmic radiation (GCR) through the extensive development of cloud. The appearance of the cold weather initiated two independent but critical driving forces for nutrient supply in ocean; i.e., cold-water formation in high-latitudes coupled with accelerated upwelling, and intensified the Hadley atmospheric circulation induced by the plume-driven development of topographic highs on-land closer to the altitude of basal stratosphere, as monitored by the secular curve of seawater Sr isotope ratio. As to the changes in ecosystem after the end-Cretaceous extinction, the promoted nutrients supply caused the increased volume of biomass and various biological innovations; e.g., replacement of radiolarians by diatom, the appearance of C4 plants etc. The collision of India against Asia, caused the species mixing between two continents. On the other hand, the resultant Tibetan uplift and birth of Asian Monsoon brought contrasting climate within Eurasia. The birth of human being along the Rift Valley in E. Africa ca. occurred 5-7Ma was caused likely by the episodic eruption of "atomic bomb" magma along the prominent rift zone. In addition to the local mass extinction by radiations, this led the episodic human escapes from Africa into Eurasia in multiple times after 1.2 Ma.