## Japan Geoscience Union Meeting 2014 (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. HDS06-P03 Room:Poster Time:May 2 16:15-17:30 ## Developing Automatic Delineation of Alluvial Fans for Rapid Hazard Assessment in Aurora Province, Philippines ORTIZ, Iris jill<sup>1\*</sup>; AQUINO, Dakila<sup>1</sup>; NORINI, Gianluca<sup>3</sup>; SALVOSA, Sheena<sup>1</sup>; LLANES, Francesca<sup>1</sup>; GALANG, Jan albert macario<sup>1</sup>; ECO, Narod<sup>1</sup>; VELEZ, Maria clara zuluaga<sup>4</sup>; LAGMAY, Alfredo mahar<sup>1</sup> <sup>1</sup>Nationwide Operational Assessment of Hazards, Department of Science and Technology, <sup>2</sup>2National Institute of Geological Sciences, University of the Philippines, Diliman, Quezon City, Phi, <sup>3</sup>Istituto per la Dinamica dei Processi Ambientali, Consiglio Nazionale delle Ricerche, Italia, <sup>4</sup>Universita degli Studi di Napoli Federico II, Napoli, Italy On Nov. 14, 2004, flashfloods from Subsob River struck Barangay(village) Paltic in Dingalan, Aurora Province around 4 a.m. when most residents were asleep - leaving hundreds homeless and 135 people dead. The series of floods caused by Violeta, Winnie, and Yoyong until December 2004 killed at least 300 people in Dingalan, Aurora alone. Mud buried 300 houses and residents were forced to stay on rooftops or seek higher ground. Because of these incidents, measures were devised to improve available geohazard maps to raise public awareness about landslides, debris flows and alluvial fans. This study developed a method to rapidly identify alluvial fans, thereby, hastening geohazard mapping in the region. Alluvial fans are fan shaped geologic formations deposited from tributaries from a mountainous terrain which flows out from the sudden break of a slope. Intense rainfall increases the discharge of sediments and water on these areas which could induce disastrous events such as flooding and debris flows. In this study, manual and automated methods in delineating fans in Aurora Province were compared. Manual delineation of alluvial fan boundaries were done through the contour lines generated from the 10-meter synthetic aperture radar (SAR)-derived digital elevation model (DEM). However, manual mapping of alluvial fan boundary which makes use of topographic interpretation of geomorphic features is subjective and time consuming. Biases were addressed by the second method by including factors such as 1) fan area of slope ranging from 1 to 8 degrees, 2) contributing stream networks from fan apex to fan toe, and 3) the fan potential lateral extent within the buffer zones based on the relief of the sediment source area in the GIS-based model. The outputs were compared with the manually delineated fans. Manual delineation identified 14 alluvial apex of 14 alluvial fans in 6 municipalities affecting 36 barangays. On the other hand, automated method identified 183 apex of 126 alluvial fans in 7 municipalities affecting 105 barangays. Although greater number of fans and wider fan area were identified using the automated method, manual delineation is still needed to check the results especially in volcanic regions. In addition, inactive alluvial fans are not accounted by the automated method. Keywords: alluvial fan, natural hazard mapping, geohazard, GIS, Aurora, Philippines