Spatial analysis of archaeological sites and landforms in Kayseri, central Turkey using multiscale topographic data

HAYAKAWA, Yuichi S.1∗; OBANAWA, Hiroyuki2; NARUHASHI, Ryutaro3; YOSHIDA, Hidetsugu4; ZAIKI, Masumi5; KONTANI, Ryoichi6; SUDO, Hiroshi7; ODAKA, Takahiro8; YAMAGUCHI, Yuji9; KULAKOGLU, Fikri10

1Center for Spatial Information Science, The University of Tokyo, 2Center for Environmental Remote Sensing, Chiba University, 3Earthquake Research Institute, University of Tokyo, 4Department of Geography, Meiji University, 5Faculty of Economics, Seikei University, 6Notre Dame Seishin University, 7Okayama Orient Museum, 8Waseda University, 9Okayama University, 10Ankara University

Human habitat and cultural activities had been significantly influenced by natural environments including landforms in the prehistoric periods. Assessment of such relationships between palaeoenvironment and artificial remains is therefore crucial in understanding the historic development. Here we examine the nature-human interactive system in the ancient period of Kayseri region, central Anatolia Highland in Turkey, in terms of spatial analysis of the distribution of landforms and archaeological settlements, targeting mainly the period from B.C. 3000 to A.D.100. We perform geospatial analyses based on several topographic data including topographic maps, satellite-based remote sensing (10 m DEM derived from PRISM sensor images on ALOS), ground-based laser rangefinder measurement with global navigation satellite system (LRF + GNSS) and ground-based structure from motion multi-view stereo photogrammetry (SfM-MVS). The topographic data at different levels of scales provides both regional- and local-scale views of landform conditions, landform classifications, and detailed characteristics of settlements. Certain effects of gradual and sudden changes in palaeoenvironment on human activities are detected, and potential of natural disasters in the study area is also discussed.

Keywords: geoarchaeology, landform classification, digital elevation models, structure from motion