Japan Geoscience Union Meeting 2014 (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. HTT35-14 Room:311 Time:May 1 12:30-12:45 ## Distributions of radionuclides Cl-36 and I-129 in surface soils before Fukushima accident SUEKI, Keisuke 1* ; KITAGAWA, Jun-ichi 2 ; SASA, Kimikazu 1 ; TAKAHASHI, Tsutomu 1 ; MATSUKURA, Masumi 1 ; KINOSHITA, Norikazu 3 ; TOSAKI, Yuki 4 ; MATSUSHI, Yuki 5 ; MATSUZAKI, Hiroyuki 6 ¹University of Tsukuba, ²High energy acclerator research organization, ³Shimizu corporation, ⁴The National Institute of Advanced Industrial Science and Technology, ⁵Kyoto University, ⁶The University of Tokyo The long-lived radionuclides ³⁶Cl and ¹²⁹I are generated by the nuclear tests or interaction with cosmic rays. They have descended to ground or sea level surface, and they have remained ground surface afterward. We have measured amount of ³⁶Cl and ¹²⁹I by accelerator mass spectrometry (AMS) before nuclear accident at the Fukushima No. 1 nuclear power plant. We have collected surface soil samples from the Sea of Japan to the Pacific Ocean at the equal-latitude cross-sectional areas (37 $^{\circ}$ 20' N - 37 $^{\circ}$ 30' N) in the south Tohoku, Japan. Inorganic chlorine in soil developed an improved leaching process that uses diluted HNO3 as an extractant, activated carbon to remove organic matters without decomposition, and H_2O_2 to remove residual organic matters. After leaching from soils, the AgCl samples for AMS-target made from the obtained solutions at ordinary treatment. Isotopic ratios of 36 Cl/Cl were determined by AMS at Tandem Accelerator Complex, University of Tsukuba. Preparation of Iodine-129 target was following ordinary method. Isotopic ratios of 129 I/I were determined by accelerator mass spectrometry (AMS) at MALT, the University of Tokyo. Moreover, we determined 137 Cs concentrations by gamma spectroscopy and LOI (loss on ignition used by an electric furnace) which related to the amount of the organic matter in soil. We obtained the distributions of radionuclides 36 Cl and 129 I in surface soils. The measured 36 Cl/Cl ratios of 34 surface soil samples which were about 0-10 cm in depth from 6 sites at the equal-latitude cross-sectional areas were between 0.1 x $^{10^{-13}}$ and 4.1 x $^{10^{-13}}$. It was shown that the 36 Cl/Cl ratios are lower at both sea sides. The concentrations of 129 I and 129 I/I ratios in surface soil (0-10 cm) at 28 points were determined to be 0.18 - 1.13 mBq/kg and 4.3 x $^{10^{-9}}$ - 11.7 x $^{10^{-9}}$, respectively. The depth profiles of 36 Cl/Cl, 129 I and 137 Cs were examined that the difference of distribution. The concentrations are higher at close surface in each nuclide. The results of 36 Cl/Cl profiles in soil cores up to 1 m long suggested that bomb-produced 36 Cl remains in uppermost sections, typically for $^{\sim}20$ cm deep, in undisturbed soil layers. The observed close correlation between organic matter content and 36 Cl/Cl ratio implies that presence of biological activity contributes the retention of fallout 36 Cl in the surface zone. The concentration of 129 I is shown the highest in uppermost surface. It is thought that the influence of global fallout has been received until now. In both nuclides, a constant amount exists in deeper than 30 cm. The concentrations of 137 Cs are not detection in deeper than 40 cm. It is showed that 137 Cs was lower mobility in soils. Therefore, the sampling soils were not a disturbance. Keywords: AMS, Cl-36, I-129, soil