Distributions of radionuclides Cl-36 and I-129 in surface soils before Fukushima accident

SUEKI, Keisuke1; KITAGAWA, Jun-ichi2; SASA, Kimikazu1; TAKAHASHI, Tsutomu1; MATSUKURA, Masumi1; KINOSHITA, Norikazu3; TOSAKI, Yuki4; MATSUSHI, Yuki5; MATSUZAKI, Hiroyuki6

1University of Tsukuba, 2High energy accelerator research organization, 3Shimizu corporation, 4The National Institute of Advanced Industrial Science and Technology, 5Kyoto University, 6The University of Tokyo

The long-lived radionuclides 36Cl and 129I are generated by the nuclear tests or interaction with cosmic rays. They have descended to ground or sea level surface, and they have remained ground surface afterward. We have measured amount of 36Cl and 129I by accelerator mass spectrometry (AMS) before nuclear accident at the Fukushima No. 1 nuclear power plant.

We have collected surface soil samples from the Sea of Japan to the Pacific Ocean at the equal-latitude cross-sectional areas (37° 20' N - 37° 30' N) in the south Tohoku, Japan. Inorganic chlorine in soil developed an improved leaching process that uses diluted HNO3 as an extractant, activated carbon to remove organic matters without decomposition, and H2O2 to remove residual organic matters. After leaching from soils, the AgCl samples for AMS-target made from the obtained solutions ordinary treatment. Isotopic ratios of 36Cl/Cl were determined by AMS at Tandem Accelerator Complex, University of Tsukuba. Preparation of Iodine-129 target was following ordinary method. Isotopic ratios of 129I/I were determined by accelerator mass spectrometry (AMS) at MALT, the University of Tokyo. Moreover, we determined 137Cs concentrations by gamma spectroscopy and LOI (loss on ignition used by an electric furnace) which related to the amount of the organic matter in soil.

We obtained the distributions of radionuclides 36Cl and 129I in surface soils. The measured 36Cl/Cl ratios of 34 surface soil samples which were about 0-10 cm in depth from 6 sites at the equal-latitude cross-sectional areas were between 0.1 x 10^{-13} and 4.1 x 10^{-13}. It was shown that the 36Cl/Cl ratios are lower at both sea sides. The concentrations of 129I and 129I/I ratios in surface soil (0-10 cm) at 28 points were determined to be 0.18 - 1.13 mBq/kg and 4.3 x 10^{-9} - 11.7 x 10^{-9}, respectively.

The depth profiles of 36Cl/Cl, 129I and 137Cs were examined that the difference of distribution. The concentrations are higher at close surface in each nuclide. The results of 36Cl/Cl profiles in soil cores up to 1 m long suggested that bomb-produced 36Cl remains in uppermost sections, typically for ~20 cm deep, in undisturbed soil layers. The observed close correlation between organic matter content and 36Cl/Cl ratio implies that presence of biological activity contributes the retention of fallout 36Cl in the surface zone. The concentration of 129I is shown the highest in uppermost surface. It is thought that the influence of global fallout has been received until now. In both nuclides, a constant amount exists in deeper than 30 cm. The concentrations of 137Cs are not detection in deeper than 40 cm. It is showed that 137Cs was lower mobility in soils. Therefore, the sampling soils were not a disturbance.

Keywords: AMS, Cl-36, I-129, soil