Developments and applications of AMS techniques for earth and human environmental research

Convener:*Toshio Nakamura(Center for Chronological Research, Nagoya University), Hiroyuki Matsuzaki(School of Engineering, The University of Tokyo), Kimikazu Sasa(Research Facility Center for Science and Technology, University of Tsukuba), Hisao Nagai(Faculty of humanities and Sciences, Nihon University), Masayo Minami(Center for Chronological Research, Nagoya University), Chair:Masayo Minami(Center for Chronological Research, Nagoya University)

Thu. May 1, 2014 2:15 PM - 4:00 PM 311 (3F)

Accelerator mass spectrometry (AMS) is a technique developed in 1977, to detect and count the small amount of nuclides in the environment, and to measure precisely the isotope ratios of the nuclides. In particular, by means of measuring rare radioisotopes in the environment, AMS techniques are applied for age measurement of samples from various application fields, such as geology, archeology and cultural properties. AMS can measure isotope ratios in the order of as low as 1.0E-10 to 1.0E-16, by the process of producing negative ions of specific nuclides by an ion source, accelerating the ions by a tandem accelerator, analyzing mass of the isotope ions by an analyzing magnet, and identifying the specific nuclides by an ionization detector. Thus AMS is used to measure isotope ratios of natural radionuclides of quite low natural abundances. AMS can be applied for studies of materials recycling and environmental science by using rare isotopes as a chemical tracer, and investigations of time sequence of tephra layers, land deposits, lacustrine and ocean sediments that are quite important for Quaternary research. This session offers a brief outlook of present status on technical progresses going on present days and interesting application programs, given by specific researchers and students engaged in AMS studies.

Potential sink of soil organic carbon in a Japanese cool-temperate forest based on bomb radiocarbon based residence time

3-min talk in an oral session

*Miyuki KONDO1, Masao UCHIDA1, Toshiyuki OHTSUKA2, Shohei MURAYAMA3, Yasuhiro SHIRATO4, Yasuyuki SHIBATA1 (1.National Institute for Environmental Studies, 2.Gifu University, 3.Environmental Management Technology, 4.National Institute for Agro-Environmental Studies)

Functional roles of SOC pool for carbon dynamic remains almost unknown. In this study, residence time (RT) based on carbon and radiocarbon (14C) inventories, was investigated in a Japanese temperate forest (Takayama) under Asian Monsoon climate, and the potential of soil carbon sequestration were also investigated. Soil organic matter was divided to two fractions as low density humified material (LOM) and high density mineral-associated material (HOM). Our results were thoroughly compared with those in a temperate forest (Harvard forest) conducted using a similar approach [Gaudinski et al., 2002]. The LOM was the major part of the SOC (76%) and its contribution was higher even in the deep layer. 14C contents of LOM in surface layer were similar to those of atmospheric CO2 and roots, whereas those in deep layer are significantly low (7%14C)