Study on the carrier of airborne radiocesium collected for six month in Tsukuba after the Fukushima nuclear accident

KANEYASU, Naoki1; KOGURE, Toshihiro2; MUKAI, Hiroki2; OHASHI, Hideo3; SUZUKI, Fumie3; AKATA, Naofumi4; OKUDA, Tomoaki5; IKEMORI, Fumikazu6

1National Institute of Advanced Industrial Science and Technology, 2Graduate School of Science, The University of Tokyo, 3Tokyo University of Marine Science and Technology, 4National Institute for Fusion Science, 5Faculty of Science and Technology, Keio University, 6Nagoya City Institute for Environmental Sciences

To obtain the knowledge on the physico-chemical properties of airborne radionuclides, we had been collected size-resolved aerosol in Tsukuba, Japan, since April 28, 2011, although the data obtained do not include the first radioactive plumes that reached to Tsukuba on March 15, 2011. From the initial result, we proposed a hypothesis that the sulfate aerosol was the potential carrier of the ^{134}Cs and ^{137}Cs that had undergone the middle- to long-range transport from the damaged reactor. We further inferred that re-suspended soil particles that attached radionuclides were not the major airborne radioactive substances from late April to May, 2011 (Kaneyasu et al., 2012).

Nevertheless, there are some issues to be addressed on the nature of airborne radionuclides. Those are, a) until when the sulfate aerosol acted as a carrier of the radiocesium released from the reactor, or the other substances acted as carriers instead, and b) what is the carrier substance when the re-suspension or re-emission of became the dominant source in the airborne radiocesium.

In this study, we address these subjects by analyzing the long-term aerosol samples collected later than those presented in the previous study. The temporal change in the activity size distribution of radiocesium for six month will be discussed. In addition, the carrier substance of radiocesium in the coarse mode size range aerosol is investigated by use of the autoradiograph and scanning electron microscope to the aerosol sample collected in 2011 summer.

Keywords: radiocesium, size distribution, re-suspension, electron microscope, autoradiograph