Japan Geoscience Union Meeting 2014

(28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.

MIS21-16 Room:511 Time:April 28 15:15-15:30

How does anthropogenic nitrogen input affect the nutrient dynamics and food web structures?

OHTE, Nobuhito 1* ; TOGASHI, Hiroyuki 3 ; TOKUCHI, Naoko 2 ; YOSHIMURA, Mayumi 6 ; KATO, Yoshikazu 7 ; ISHIKAWA, Naoto F. 5 ; KONDO, Michio 4 ; TAYASU, Ichiro 7

¹Graduate School of Agricultural and Life Sciences, University of Tokyo, ²Tohoku National Fisheries Research Institute, Fisheries Research, ³Field Science Education and Research Center, Kyoto University, ⁴Kansai Research Center, Forestry and Forest Products Research, ⁵Center for Ecological Research, Kyoto University, ⁶Japan Agency for Marine-Earth Science and Technology, ⁷Faculty of Science and Technology, Ryukoku University

In last five decades, impacts of anthropogenic nutrient inputs on river ecosystems have continuously been a major concern for the governments and residents of the catchments in Japan. Major sources of anthropogenic nitrogen (N) include leachate from forest ecosystem, surplus fertilizers and sewage. Impacts of anthropogenic N inputs on nutrient dynamics and food web structures were investigated using stable N isotope techniques in the Arida river catchment, Japan. Riverine survey utilizing 5 regular sampling points showed that δ^{15} N of nitrate (NO₃⁻) increased from forested upstream (~2 ‰) to the downstream (~7 ‰) due to the sewage loads and fertilizer effluents from agricultural area. Correspondingly the δ^{15} N of benthic algae and aquatic insects increased toward the downstream. This indicates that primary producers of each reach strongly relied on the local N sources and it was utilized effectively in their food web. Simulation using a GIS based mixing model considering the spatial distributions of human population density and fertilizer effluents revealed that strongest impacts of N inputs was originated from organic fertilizers applied to orchards in the middle to lower parts of catchment. Differences in δ^{15} N between primary producers and predators were ~6-7 ‰ similarly at all sampling points. Food web structural analysis using food network unfolding technique based on observed δ^{15} N suggested that the structure of nutrient pyramid did not differ significantly along the riverine positions, while the members of species in each trophic revel changed and the impact of anthropogenic N input was visible along the river.

Keywords: river ecosystem, nitrogen input, stable isotope, food web