Japan Geoscience Union Meeting 2014 (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. Japan Geoscience Dur. Naren de La trans

MTT42-P06

Room:Poster

Improved 10Be preparation to reduce analytical background for earth surface process studies

YAMANE, Masako^{1*} ; YOKOYAMA, Yusuke² ; MIYAIRI, Yosuke² ; HORIUCHI, Kazuho³ ; MATSUZAKI, Hiroyuki⁴

¹JAMSTEC, ²AORI, Univ. Tokyo, ³Hirosaki Univ., ⁴Grad. Sch. Eng., Univ. Tokyo

Due to advancement of Accerelator Mass Spectrometry (AMS), *in situ* produced beryllium-10 (10 Be) in quartz has been used for earth surface process studies, such as surface exposure dating (*e.g.* Yamane *et al.*, 2011), erosion rate estimations (*e.g.* Shiroya *et al.*, 2012), tectonic processes (Yokoyama *et al.*, 2005) and so forth (*e.g.* Gosse and Phillips, 2001). In order to expand the applicability of this technique, the sample with low 10 Be concentration need to be measured with high precision. This requires reduction of background that is often affected isobars (boron-10). We have conducted several attempts and found that the length of time exposed to the ambient atmosphere during the oxidization process is the most important step to increase 10 Be background (Yokoyama *et al.*, submitted). In this presentation, we discussed our experimental results and potential improvement of topics for understanding of earth surface process.

Keywords: beryllium-10, background, earth surface process, Accerelator Mass Spectrometry