Japan Geoscience Union Meeting 2014 (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved.

PEM08-23

Room:411

Dynamical estimation of external/internal acceleration processes of the outer radiation belt using data assimilation

MIYOSHI, Yoshizumi^{1*}; TOYAMA, Haruto¹; UENO, Genta²; KOSHIISHI, Hideki³; MATSUMOTO, Haruhisa³; SH-IOKAWA, Kazuo¹

¹STEL, Nagoya University, ²The Institute of Statistical Mathematics, ³JAXA

Dynamical evolution of the outer belts should be a delicate balance among several processes. It has been believed that there exist two different acceleration mechanisms: the radial diffusion as the external source process, and the non-adiabatic wave particle interactions as the internal source process. In order to discriminate when and where these processes are dominant for the large flux enhancement of the outer belt electrons, we have developed a data assimilation code on the outer belt electrons. In our data assimilation, the particle filter and the particle smoother are used which are effective for non-linear/non-Gaussian distribution problems. We include the radial diffusion coefficient and the internal source model in the state vector and estimate the dynamical variations of these parameters. The Tsubasa satellite electron data are used as the observation vector. The results indicate that only the radial diffusion process is always too small to explain the observed flux enhancement and the internal source process should be necessary. The assimilation result suggests that the internal source process tend to take place around the storm recovery phase, which is consistent with the observations.

Keywords: radiation belts, data assimilation