Comparing the ionospheric plasma drift obtained from the global MHD simulation and that measured by SuperDARN radars

SAITA, Satoko1; FUJITA, Shigeru2; KADOKURA, Akira3; TANAKA, Takashi4; YUKIMATU, Akira sessai3; TANAKA, Yoshimasa3; OHTANI, Shinichi5; MURATA, Ken T.6; HIGUCHI, Tomoyuki7

1Research Organization of Information and Systems, 2Meteorological College, 3National Institute of Polar Research, 4International Center for Space Weather Science and Education, Kyushu University, 5Johns Hopkins University Applied Physics Laboratory, 6National Institute of Information and Communications Technology, 7The Institute of Statistical Mathematics

We present a parameter study of simulated processes of the magnetosphere-ionosphere (M-I) coupling using the global MHD simulation code developed by Tanaka (2010).

The boundary conditions for the M-I coupling include some scaling factors. These factors are adjustable and are determined through trial and error. The main goal of this study is optimization of these scaling factors in the boundary condition by use of a data assimilation technique.

In this paper, we combine the MHD simulation and solar wind parameters derived from the ACE satellite, and compare the ionospheric E x B plasma drift obtained from the global MHD simulation and that obtained from the SuperDARN HF Radar Network.

References:

Keywords: the ionospheric convection, SuperDARN, simulation