Japan Geoscience Union Meeting 2014 (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.



PEM32-13

Room:503

## Analysis on turbulent reconnection of three-dimensional resistive MHD simulation

WANG, Shuoyang  $^{1\ast}$  ; YOKOYAMA, Takaaki  $^1$  ; ISOBE, Hiroaki  $^2$ 

<sup>1</sup>The University of Tokyo, <sup>2</sup>Kyoto University

This study starts from a three-dimensional current sheet with random perturbation on velocity, in order to understand more on the 3D reconnection in a more general way.

Due to the periodic boundary condition, the core of current sheet quickly develops a resonance netlike pattern under tearing instability. Small reconnection site mainly form two chains on either side of the current sheet center and constitute a zigzag arrangement. The outflow from one reconnection site is fed into the counterpart on the other side thus composes a positive feedback system resembles even double tearing mode. As the inflow being enhanced, slow-mode shocks are identified along the current sheet. The conversion of the magnetic energy is further raised. Total kinetic energy of the current sheet presents 4 steps of development while first 3 exhibit linear growing tendency. At the same time, reconnection rate increases by 5 times compared with the early phase. Thus we have achieved faster reconnection without localized resistivity in a more universal idea.