Japan Geoscience Union Meeting 2014

(28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.

PPS23-07

Room:413

Time:May 2 10:30-10:45

Identification of secondary craters based on the Voronoi diagram of the lunar craters

KINOSHITA, Tatsuo¹; HONDA, Chikatoshi^{1*}; HIRATA, Naru¹; MOROTA, Tomokatsu²

¹The University of Aizu, ²Graduate School of Environmental Studies, Nagoya University

We developed an automatic method for detecting crater clusters with crater spatial distribution based on the Area Voronoi tessellation technique. In the method based on the hierarchical cluster analysis, the evaluation of crater strongly depends on the closest one crater (or one cluster). In the method based on Voronoi tessellation on the other hand, it depends on the adjacent all craters. Since, this approach does not misjudge the pair craters evaluated cluster by the method based on the hierarchical cluster analysis. When a small crater is close adjacent a large crater, a boundary line of Voronoi tessellation is in the rim of the crater. This is different from the line a person pulls by intuition. So, we select Area Voronoi tessellation. For estimate an area of Voronoi, we adopted the wave front method (Watanabe and Murashima, 2006). We applied the Area Voronoi tessellation to observed crater spatial distribution. If the area of Voronoi cell is small, the crater becomes the candidate of the crater cluster. As a result, for the evaluation of crater spatial distribution, we propose that the Area Voronoi diagram is suitable to identify candidates of secondary crater.

Keywords: secondary crater, Voronoi diagram