Toward the integrated understanding of crustal deformation in plate convergence zones

Convener:*Yukitoshi Fukahata(Disaster Prevention Research Institute, Kyoto University), Yuji Yagi(Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba), Takeshi Sagiya(Disaster Mitigation Research Center, Nagoya University), Manabu Hashimoto(Disaster Prevention Research Institute, Kyoto University), Masanobu Shishikura(Active Fault and Earthquake Research Center, GSJ/AIST), Shoichi Yoshioka(Research Center for Urban Safety and Security, Kobe University), Yasutaka Ikeda(Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo), Gaku Kimura(Department of Earth and Planetary Science of the Graduate School of Science, The University of Tokyo), Mitsuhiro Matsu'ura(The Institute of Statistical Mathematics), Chair: Yukitoshi Fukahata(Disaster Prevention Research Institute, Kyoto University), Saeko Kita(National Research Institute for Earth Science and Disaster Prevention)

Wed. Apr 30, 2014 9:00 AM - 10:45 AM  414 (4F)

In plate convergence zones, crustal deformation, such as coseismic deformation, post-seismic movement, uplift of marine terraces, geomorphic evolution, and so on, have a wide range in its time scale. Since they are strongly related with each other, in this session, we aim to integrate the knowledge of seismology, geodesy, geomorphology and geology, in order to fully understand these phenomena.

10:30 AM - 10:45 AM

Self-affinities for Amplitude and Wavelength of Folds

3-min talk in an oral session

*Kazuhei KIKUCHI¹, Hiroyuki NAGAHAMA³ (¹.Department of Earth Science, Graduate School of Science, Tohoku University)

Keywords:Fold, Self-affinity, Buckingham's Pi-theorem, Incomplete self-similarity theory

In general, many folds are apparently curved or jagged on a wide range of scales, so that their geometries appear to be similar when viewed at different magnifications. By Matsushita and Ouchi (1989a, b)'s method, we also analyzed the self-affinities of folds in the North Honshu Arc, Japan (Kikuchi et al., 2013). Based on this analysis, geometries were found to be self-affine and can be differently scaled in different directions. We recognize the self-affinities for the amplitude and the wavelength of folds and a crossover from local to global altitude (vertical) variation of the geometries of folds in the Northeast Honshu Arc. Buckingham's Pi-theorem is sufficient to the first problems of fold systems (Shimamoto, 1974). However, the complete similarity cannot give us the self-affinities of folds. A general renormalization-group argument is proposed to the applicability of the incomplete self-similarity theory (Barenblatt, 1979). Based on the general renormalization-group argument, we derive the self-affinities for the wavelength (L) and the amplitude (a) of folds: L^{(1-d)} ∝ a.The relationship between Hurst exponents H of fold (Kikuchi et al., 2013) and d are equation: 1-d=H, where H is index of the continuity of a given fold curve and obtained by the ratio between horizontal scaling exponent and vertical scaling exponent. d is an exponent of a given incomplete self-similarity theorem. In d ≠ 0 case, the Hurst exponent H ≠ 1 indicates self-affinities for the given fold curve. In this case, scale invariance of the fold might be affected by a variety of tectonic processes under the anisotropic stress field. In d = 0 particular case, the Hurst exponent H = 1 indicates self-similarity for the given fold curve. In this case, scale invariance of the fold might not be affected by a variety of tectonic processes under the