Helium and halogen compositions in MORB vesicles

*Takanori KAGOSHIMA¹, Naoto TAKAHATA¹, Yuji SANO¹ (1.Atmosphere and Ocean Research Institute, University of Tokyo)

Keywords: Mid-ocean ridge basalt, Helium, Halogen, Flux, Geochemical cycle

Degassing behavior of halogens through submarine volcanism is not well understood. We determined helium and halogen compositions of MORB vesicles to constrain halogen flux at ridges. Samples collected at 8 sites (13°N-17°S on EPR; 15°N-37°N on MAR; 24-25°S on CIR) were crushed in dilute NaOH or NH₃ solution at liquid nitrogen temperature and volatiles were extracted from vesicles. Helium isotope compositions were determined with a VG-5400 MS and F and Cl contents were measured with ICS-2100 ion chromatography. For glass matrix, concentration of F and Cl were determined with a NanoSIMS. For vesicles, the average ³He concentration was (4.5±2.1)×10⁻¹⁵ mol/g of sample and the average F/³He and Cl/³He ratios were (1.4±0.5)×10⁶ and (2.9±0.6)×10⁷. This provides F and Cl flux of (7.1±2.8)×10⁸ mol/y and (1.5±0.4)×10¹⁰ mol/y at ridges calibrating against the known ³He flux of 530 mol/y. They may be defined as lower limits of MOR flux because F and Cl contents in glass matrix are >7000 and >100 times higher than those in vesicles and dissolution of only a small part of volatiles staying in oceanic crust into the ocean will increase volatile flux significantly. The large difference between F/Cl ratios in vesicles and glass matrix reflects difference in vesicle/glass partition coefficients of these elements, which suggests that they have significantly different degassing behavior at ridges. From the data of the noble gas method on MORB in literature, Br/Cl and I/Cl ratios in vesicles were calculated to be (1.8±0.1)×10⁻³ and (5.4±0.1)×10⁻⁵ which are almost equivalent with those in glass matrix [1], suggesting their vesicle/glass partition coefficients are similar in submarine basaltic magma. Br and I flux at ridges were calculated to be (2.7±0.8)×10⁷ mol/y and (8.3±2.4)×10⁵ mol/y based on the Cl flux estimated in this study. They are the first estimate of Br and I flux obtained by indirect calibration against ³He flux and may be lower limits of MOR flux by the same reason as Cl. Combination of the method in this study and the noble gas method on the same sample will give us new insight into degassing behavior and geochemical cycles of halogens.