Japan Geoscience Union Meeting 2014 (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved.

SIT03-20

Time:April 29 15:30-15:45

Relationship between sound velocity and density of liquid alloy under pressure

TERASAKI, Hidenori^{1*}; NISHIDA, Keisuke²; URAKAWA, Satoru³; KUWABARA, Souma¹; TAKUBO, Yusaku¹; SHI-MOYAMA, Yuta¹; UESUGI, Kentaro⁴; TAKEUCHI, Akihisa⁴; SUZUKI, Yoshio⁴; KONO, Yoshio⁵; HIGO, Yuji⁴; KONDO, Tadashi¹

¹Osaka Univ., ²Univ. Tokyo, ³Okayama Univ., ⁴JASRI, ⁵HPCAT

It is important to understand the relationship between sound velocity and density of liquid Fe-alloys under high pressure for obtaining a constraint of the composition of the molten outer core from observed seismic data. We have studied a relationship between sound velocity and density of liquid alloy based on simultaneous measurement of these properties under high pressure and high temperature. Sound velocity was measured using ultrasonic pulse-echo overlapping method and density was measured employing X-ray absorption method combined with X-ray tomography technique. The measured P-wave velocity and density of liquid Ni?S both increase with pressure. From these data, adiabatic bulk modulus (K_{S0}) of the liquid sample can be well constrained to 29 GPa. It is note that the measured P-wave velocity is found to increase linearly with increasing density. This result provides an important issue in terms of Birch's law for liquid material.

Keywords: Sound velocity, density, liquid, high pressure