Fluid flow, deformation and physical properties of the subduction boundary and forearc mantle

Conveners: *Simon Wallis (Department of Earth and Planetary Sciences, Nagoya University), Yoshihiro Hiramatsu (School of Natural System, College of Science and Engineering, Kanazawa University), Ken-ichi Hirauchi (Department of Geosciences, Graduate School of Science, Shizuoka University), Tomoyuki Mizukami (Earth Science Course, School of Natural System, College of Science and Engineering, Kanazawa University), Chair: Simon Wallis (Department of Earth and Planetary Sciences, Nagoya University), Ken-ichi Hirauchi (Department of Geosciences, Graduate School of Science, Shizuoka University)

Mon. Apr 28, 2014 9:00 AM - 10:35 AM 414 (4F)

Subduction brings oceanic crustal material into direct contact with the overlying mantle wedge. The subduction boundary changes its slip behaviour from seismic to aseismic with increasing depth. The deep forearc region around the tip of mantle wedge shows a transitional nature with episodic tremor and slip which are probably strongly influenced by sustained fluid flow. The amount of fluid release in the forearc is not well constrained but is thought to depend on the thermal structure of the subduction zone. Fluid released into the forearc mantle will cause a transformation of mantle rock to serpentinite. This metamorphic transformation implies a major volume change and a change in physical properties of the mantle. Despite considerable recent advances in understanding these processes, there is no good consensus on how strong this forearc region is likely to be or how fluids are transported. Such information is vital in developing more complete tectonic models of these geologically and geophysically important regions. In this session we aim to contribute to our understanding of the deep forearc by bringing together the results of a variety of different approaches including field based observations, experimental work, theoretical modeling and geophysical observations on deformation, reaction and physical properties in fluid-rock systems.

Awaruite in serpentinites from Oshima Peninsula, Fukui Prefecture, Japan

3-min talk in an oral session

*Kai YAMAGUCHI¹, Seiichiro UEHARA² (1.Department of Earth and Planetary Sciences, Faculty of Science, Kyushu University, 2.Department of Earth and Planetary Sciences, Faculty of Science, Kyushu University)

Keywords: Awaruite, Mesh texture, Serpentinite, Microtexture, Serpentine minerals, TEM

Awaruite is one of native Ni-Fe alloys, and the compositional range is Ni₂Fe to Ni₃Fe. The space group is Fm₃m or Pm₃m (e.g., Williams, 1960; Ahmed et al., 1981). Typical grain sizes are 10-300 μm, and grain shapes are typically irregular, anhedral or skeletal. It is found only in the serpentinized peridotites and chondritic meteorites (e.g., Ramdohr, 1967; Clarke et al., 1970). In general, awaruite is observed in serpentinite vein (Sakai and Kuroda, 1983), and coexist with other metal minerals (Kanehira et al., 1975). This study deals with the characteristic occurrence of awaruite in pseudomorph texture in the Oshima serpentinites from Oshima peninsula, Fukui prefecture, Japan. All samples were examined with polarizing microscope observation, X-ray diffraction analysis and SEM-EDS analyses. Preparation of TEM specimen and microtexture observation were conducted with an ion milling machine (JEOL EM-09100IS) and TEM (JEOL JEM-2000FX, JEM-3200FSK) in the Research Laboratory for High Voltage Electron Microscopy (HVEM), Kyushu University, Japan. Chemical analyses of microtexture were also examined using JEM-3200FSK equipped with EDS. Peridotites in this area are partially or perfectly serpentinized. Texture of
the serpentinite is mesh texture after forsterite and vein texture. Scarcely serpentinized enstatite is also observed. Each mesh texture is composed of mesh rim shows optical anisotropy and mesh core shows optical isotropy. The serpentinization of mesh texture is strong in close to vein textures. Most mesh rims near vein texture consist of some layers; outer rim, outer-inner rim boundary and inner rim. These rims consist of chrysotile, about 50 nm in width and 2 μm in length, and lizardite, about 300 nm in width and 1 μm in length, and outer-inner rim boundary about 2 μm in width are filled with serpentine fine grains, up to 100 nm in diameter. A number of awaruite fine grains, 200-300 nm diameter, array along cell boundary, outer-inner rim boundary and rim-core boundary. These awaruite coexist with no other metal minerals; pentlandite, magnetite and etc. In contrast, metal minerals in vein texture are magnetite and minor pentlandite. These results indicate that mesh texture in serpentinite is extremely reductive environment compared with vein texture. The chemical composition of awaruite (average of four analysis) is Ni 73.13% and Fe 26.87%. The cross-section of these awaruite grains is square or rhombic, indicating that these grains are cube or octahedral crystals (fig. 1a). These grains seem to be euhedral from grain shapes, and this is characteristic compared with previous studies (e.g., Rubin, 1991). The SAED pattern recorded along the [001] zone axis shows strong 200, 220 reflections and weak 100, 110 reflections (fig. 1b). This indicates space group of the Oshima awaruite is \(Pm\bar{3}m \), which is ordering phase of \(Fm\bar{3}m \) awaruite. Lower symmetry of the Oshima awaruite will be formed lower temperature.