Fluid flow, deformation and physical properties of the subduction boundary and forearc mantle

Convener:*Simon Wallis(Department of Earth and Planetary Sciences, Nagoya University), Yoshihiro Hiramatsu(School of Natural System, College of Science and Engineering, Kanazawa University), Ken-ichi Hirauchi(Department of Geosciences, Graduate School of Science, Shizuoka University), Tomoyuki Mizukami(Earth Science Course, School of Natural System, College of Science and Engineering, Kanazawa University), Chair:Simon Wallis(Department of Earth and Planetary Sciences, Nagoya University), Ken-ichi Hirauchi(Department of Geosciences, Graduate School of Science, Shizuoka University)

Mon. Apr 28, 2014 9:00 AM - 10:35 AM 414 (4F)

Subduction brings oceanic crustal material into direct contact with the overlying mantle wedge. The subduction boundary changes its slip behaviour from seismic to aseismic with increasing depth. The deep forearc region around the tip of mantle wedge shows a transitional nature with episodic tremor and slip which are probably strongly influenced by sustained fluid flow. The amount of fluid release in the forearc is not well constrained but is thought to depend on the thermal structure of the subduction zone. Fluid released into the forearc mantle will cause a transformation of mantle rock to serpentinite. This metamorphic transformation implies a major volume change and a change in physical properties of the mantle. Despite considerable recent advances in understanding these processes, there is no good consensus on how strong this forearc region is likely to be or how fluids are transported. Such information is vital in developing more complete tectonic models of these geologically and geophysically important regions. In this session we aim to contribute to our understanding of the deep forearc by bringing together the results of a variety of different approaches including field based observations, experimental work, theoretical modeling and geophysical observations on deformation, reaction and physical properties in fluid-rock systems.

Olivine crystallographic preferred orientation (CPO) is thought to be the main cause of seismic anisotropy in the mantle, and its formation is generally considered to be the result of plastic deformation of mantle by dislocation creep. Olivine CPO has been reproduced in laboratory deformation experiments and considerable success has been achieved in understanding the deformation conditions (e.g. stress, temperature and water content) under which different olivine CPO patterns develop. This opens the possibility of mapping conditions in the mantle using seismic anisotropy and has been the subject of considerable study. Here we report an alternative mechanism for olivine CPO without the need for deformation. This process may be important in understanding the seismic properties of mantle
in convergent margins. Metamorphic studies show peridotite in the Happo area, central Japan, formed by the dehydration of antigorite-schist related to contact metamorphism around a granite intrusion. Both field and microstructural observations suggest the olivine has not undergone strong plastic deformation. This was confirmed by TEM work that shows the olivine has very low dislocation densities and lacks low angle tilt boundaries. Such tilt boundaries are generally stable even after annealing. These features show that peridotite in the Happo area formed in the absence of solid-state deformation. The olivine of the Happo peridotite formed dominantly by the dehydration breakdown of antigorite schist. We propose that the olivine CPO formed as a result of topotactic replacement of antigorite by the newly formed olivine. EBSD measurements in samples where both antigorite and new olivine are present and in contact show a very close crystallographic relationship between the two minerals: the a-axes are parallel, and the b- and c-axes are perpendicular. We conclude the strong olivine CPO in the Happo area was inherited from the original CPO of the antigorite. Such a process is likely to also occur in subduction zones where serpentinite is dragged down by plate movement. Topotactic growth of olivine may be an important cause of mantle anisotropy in convergent margins.