[S-IT41_28PM2] Origin, Evolution, Destruction, and Recycling of Oceanic Plate

Convener: *Tomoaki Morishita (School of Natural System, College of Science and Technology, Kanazawa University), Toshitsugu Yamazaki (Atmosphere and Ocean Research Institute, The University of Tokyo), Nobukazu Seama (Department of Earth and Planetary Sciences, Graduate School of Science, Kobe University), Ryo Anma (Faculty of Life and Environmental Science, University of Tsukuba), Hidenori Kumagai (Independent Administrative Institution, Japan Agency for Marine-Earth Science and Technology), Daisuke Nakamura (Okayama University), Chair: Daisuke Nakamura (Graduate School of Natural Science and Technology, Okayama University), Yuki Kusano (School of Natural System, College of Science and Engineering, Kanazawa University)

Mon. Apr 28, 2014 4:15 PM - 6:00 PM 314 (3F)

Formation and subduction of oceanic plate play an important role in the thermochemical evolution of the Earth interior and surface environmental conditions including biological activities. However, we have never clearly answered basic questions: such as (1) Origin and modification (metamorphism and alteration coupled with biological activities) of oceanic plate before and after subduction, (2) Impact of destruction of oceanic plate on subduction zone processes, such as volcanism and earthquake, (3) Differences between mid-ocean ridge and back arc settings. In order to understand the origin, evolution and deconstruction of oceanic plate, the session invites contributions from a range of geophysics, geochemistry, petrology, modeling, simulation and biology working on intact as well as fossil oceanic lithosphere, e.g., ophiolite.

5:45 PM - 6:00 PM

[SIT41-P04_PG] Petrological features of the peridotite xenoliths in the 1991 Pinatubo dacite and mantle metasomatism by subducted ocean

3-min talk in an oral session

*Masako YOSHIKAWA¹, Akihiro TAMURA², Shoji ARAI², Tetsuo KOBAYASHI⁵, Tatsuhiko KAWAMOTO¹, Mitsuru OKUNO⁵, Betchaida PAYOT², Danikko RIVERA⁵, Ericson BARISO⁵, Hannah T. MIRABUENO MA.⁶ (1.Institute for Geothermal Sciences, Kyoto Univ., 2.Department of Earth Sciences, Kanazawa Univ., 3.Department of Earth and Environmental Sciences, Kagoshima Univ., 4.Department of Earth System Science, Fukuoka Univ., 5.PHIVOLCS, 6.Institute of Volcanology and Seismology, University of the Philippines)

Keywords: amphibole-bearing peridotite xenolith, Pinatubo, mantle metasomatism, mantle wedge

We observed peridotite xenoliths in the dacite of the 1991 pyroclastic flow deposit of Pinatubo volcano, which is located at the volcanic front of the Luzon (Bataan) arc, Luzon island, the Philippines. The Luzon arc is associated with eastward subduction of the South China Sea plate along the Manila Trench. We also found olivine xenocrysts and xenoliths of amphibolite and granitic rocks in the dacitic deposits. The largest xenolith was up to 14 cm across among about 200 collected samples. Selvage of hornblendeite, up to 5 mm width, is common between the peridotite and the dacite host. Arai et al. (1996) classified peridotite xenoliths from Iraya volcano, Batan Island, the Philippines, into coarse grained (C) and fine grained (F) types depend in terms of olivine grain size. The C-type xenoliths are equivalent to ordinary mantle xenoliths from various localities and the F-type xenoliths are quite different in texture, its
individual grains being hardly visible by the naked eye and the fine-grained (≤ 0.1 mm) part occupying > 10% by volume (Arai and Kida, 2000). They interpreted that the F-type peridotite was possibly formed from the C-type one by recrystallization assisted by SiO$_2$-rich fluid or melt originated from subducting slab. Such peculiar F-type xenoliths can be observed in the peridotite xenoliths from Avacha volcano on the volcanic front of the Kamchatka arc, Russia (Ishimaru et al., 2007) and at Tubaf and Edison volcanos, Tabar-Lihir-Tang-Feni island arc, which occur in the fore-arc region of the New Ireland intra-oceanic island arc, Papua New Guinea (McInnes et al., 2001). According to their definition, the F-type peridotites occupy about 50% of 40 Pinatubo samples. Almost all of the Pinatubo C-type xenoliths are spinel harzburgites (olivine + orthopyroxene + amphibole + spinel ± clinopyroxene ± phlogopite) except a wehrlite and a dunite samples. CO$_2$-bearing saline fluid inclusions were observed in all samples (Kawamoto et al., 2013). The Sr-Nd isotopic compositions of amphibole from the primary C-type xenolith containing least amounts of fine-grained part are consistent with the most depleted values of the range of andesite and dacite (87Sr/86Sr = 0.70419 - 0.70425, 143Nd/144Nd = 0.512863 - 0.512924; Castillo et al, 1991; Bernard et al, 1991). Their compositional variation is within a range of South China Sea oceanic basalt (Tu et al., 1992). Multi-element chondrite-normalized patterns of the amphiboles show depleted signatures with enrichment of Ba, Rb, U, in Pb. These enriching elements are considered as fluid mobile during dehydration of subducting mantle, oceanic crust and sediment (e.g. Tatsumi et al., 1986; McCulloch &Gamble, 1991). The present Sr-Nd isotopic and geochemical signatures of the amphibole suggest that the Pinatubo C-type mantle xenoliths have also been metasomatized by aqueous fluids released from subducted oceanic crust beneath the volcanic front.References; Arai et al., Sci. Rep. Kanazawa Univ., 41, 25-45, 1996; Arai &Kida, Is. Arc, 9, 458-471, 2000; Bernard et al, in Newhall &Punongbayan (eds.) Fire and mud: PHILVOLCS, 767?798, 1991; Castillo &Punongbayan, in Newhall &Punongbayan (eds.) Fire and mud, PHILVOLCS, 799-806, 1991; Ishimaru et al., J. Petrol., 48, 395-433, 2007; Kawamoto et al., PNAS, 110, 9663-9668, 2013; McCulloch &Gamble, EPSL, 102, 358-374, 1991; McInnes et al., EPSL, 188, 169-183, 2001; Tu et al., Chem. Geol., 97, 47-63, 1992.