Japan Geoscience Union Meeting 2014 (28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan) ©2014. Japan Geoscience Union. All Rights Reserved. Japan Geoscience Dur Area nat Jana Market

SMP06-08

Room:411

Large ion lithophile elements delivered by saline fluids to sub-arc mantle

KAWAMOTO, Tatsuhiko1* ; MIBE, Kenji2

¹Inst Geotherm Sci, Grad School Sci, Kyoto Univ, ²Earth Research Institute, Univ of Tokyo

Geochemical signatures of arc basalts are explained by addition of aqueous fluids, melts, and/or supercritical fluids from subducting slab to sub-arc mantle. Partitioning of large ion lithophile elements between aqueous fluids and melts is crucial as these two liquid phases are present in the sub-arc pressure-temperature conditions. Using synchrotron x-ray beams, in-situ x-ray fluorescence (XRF) spectra are obtained from aqueous fluids and silicate melts at high-temperature and high-pressure conditions under varied concentrations of (Na, K)Cl (0-25 wt.%). There is a positive correlation between partition coefficients and pressure, as well as partition coefficients and salinity. In the systems with 13-25 wt.% (Na, K)Cl, partition coefficients of Rb, Cs, and Pb are greater than unity, indicating the capacity of such highly saline fluids to effectively transfer those elements. Enrichment of large ion lithophile elements in arc basalts relative to mid oceanic ridge basalts has been attributed to the mantle source fertilization by aqueous fluids from dehydrating oceanic plate. Such aqueous fluids are likely to contain Cl, although their amount remains to be quantified.

Keywords: subduction zone, magma, high temperature and high pressure, mantle wedge, synchrotron X-ray, chlorine