Japan Geoscience Union Meeting 2014

(28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.

SMP46-P14

Room:Poster

Time: April 28 18:15-19:30

Deformation microstructures of a Kamila amphibolite mylonite and their formative temperatures

ARAI, Tomoyuki^{1*}; KANAGAWA, Kyuichi¹; YOSHINO, Takashi²

¹Graduate School of Science, Chiba University, ²Institute for Study of the Earth's Interior, Okayama University

The Kohistan complex and the Kamila amphibolite belt in the northern Pakistan are considered to represent a Cretaceous island arc crust and a part of its lower crust, respectively. Here we report deformation microstructures of a Kamila amphibolite mylonite sample and their formative temperatures.

The amphibolite mylonite sample studied is composed of $100~\mu m$ to 1 mm thick alternating layers of hornblende + pyroxene, plagioclase, and hornblende + plagioclase + quartz, intercalating a 3 mm thick layer of garnet + quartz + plagioclase. Composite planar fabrics of a top-to-south sense of shear are developed in this sample; C plane defined by compositional layering (= foliation), S plane defined by lenticular domains of plagioclase aggregate clockwise oblique to the C plane, and C ' plane anticlockwise oblique to the C plane.

Hornblende + pyroxene layers contain pyroxene porphyroclasts of grain sizes $\approx 200~\mu m$ scattered in matrix mainly composed of hornblende grains with grain sizes $\approx 30~\mu m$. Hornblende exhibits a strong crystallographic preferred orientation with (100) and [001] subparallel to foliation and lineation, respectively. Orthopyroxene porphyroclasts are elongated subparallel to foliation, and are accompanied by asymmetric tails mainly composed of hornblende indicating a top-to-south sense of shear. In addition, pyroxene porphyroclasts are surrounded by fine-grained ($\approx 10~\mu m$) hornblende and quartz, suggesting a breakdown reaction of pyroxenes (orthopyroxene + clinopyroxene + H2O = hornblende + quartz), which is a retrograde reaction from granulite facies to amphibolite facies.

Plagioclase layers are composed of dynamically recrystallized plagioclase grains of An_{47-54} in composition. Lenticular domains of plagioclase are likely porphyroclasts in origin. Plagioclase grains are polygonal in shape, and weakly aligned clockwise oblique to foliation, which also suggests a top-to-south sense of shear. Plagioclase exhibits a distinct crystallographic preferred orientation with $\{131\}$ and <1-12>clockwise oblique to foliation and lineation, respectively by ≈ 20 degrees. But $\{131\}$ and <1-12>are aligned subparallel to the S plane, suggesting the dominance of $\{131\}<1-12>$ during the dynamic recrystallization of plagioclase.

We applied three pyroxene geothermometers to the chemical compositions of orthopyroxene and clinopyroxene porphyroclasts, which yielded temperatures around 850 degrees C. We also applied a hornblende-plagioclase geothermometer to the average chemical compositions of hornblende and plagioclase in hornblende + plagioclase + quartz layers, and obtained a temperature of ≈ 610 degrees C. Thus, the amphibolite mylonite studied likely experienced a peak metamorphism of granulite facies at ≈ 850 degrees C, and subsequently a retrograde metamorphism of amphibolite facies at ≈ 610 degrees C, during which it was sheared by top-to-south thrusting.