Application and Future Development of Earthquake Early Warning

Convener:*Masaki Nakamura(JMA), Masumi Yamada(Disaster Prevention Research Institute, Kyoto University), Mitsuyuki Hoshiba(Meteorological Research Institute), Hiroshi Tsuruoka(Earthquake Research Institute, Tokyo Univ.), Shin Aoi(National Research Institute for Earth Science and Disaster Prevention), Shunroku Yamamoto(Railway Technical Research Institute), Hiroshi Araya(Japan Meteorological Agency), Chair:Masaki Nakamura(JMA)
Fri. May 2, 2014 11:00 AM - 12:45 PM 312 (3F)

Earthquake Early Warning (EEW) is provided to public users nationwide in Japan from October 2007. The attention to the system has been increasing by broadcasting from the television, radio, and mobile phone. The contribution of the automatic processing technology of observing waveform data is very important for the development of EEW. In this session, we will discuss on the technical improvement of EEW, the practical application of EEW, and the automatic processing technology.

Regional Earthquake Early Warning Applications in Marmara Region Based on KOERI Seismic Network

*S Ali PINAR¹, Mustafa COMO GLU¹, Can ZULFIKAR¹, Suleyman TUNC¹, Mustafa ERDIK¹ (1. Bogazici University, Kandilli Observatory and Earthquake Research Institute, Istanbul, Turkey)

KOERI (Kandilli Observatory and Earthquake Research Institute) operates a seismic network in Marmara Sea region (NW Turkey) consisting of 40 broadband and 30 strong motion inland and OBS stations which has a good topology for regional EEW studies. Data transmission between the remote stations and the base station at KOERI is provided both with satellite and fiber optic cable systems. The continuous on-line data from these stations is used to provide real time warning for emerging potentially disastrous earthquakes. The Virtual Seismologist in SeisComP3 and the PRESTo regional EEW (earthquake early warning) softwares are the two regional EEW algorithms that have been recently setup at KOERI data center to generate the EEW signal. Onsite EEW application are underway for more than a decade. The early warning signal is communicated to the appropriate servo shut-down systems of the recepient facilities, that automatically decide proper action based on the alarm level. Istanbul Gas Distribution Corporation (IGDAS) is one of the end users of the EEW signal. IGDAS, the primary natural gas provider in Istanbul, operates an extensive system 9,867 km of gas lines with 550 district regulators and 474,000 service boxes. State-of-the-art protection systems automatically cut natural gas flow when breaks in the pipelines are detected. IGDAS uses a sophisticated SCADA (supervisory control and data acquisition) system to monitor the state-of-health of its pipeline network. This system provides real-time information about quantities related to pipeline monitoring, including input-output pressure, drawing information, positions of station and RTU (remote terminal unit) gates, slum shut mechanism status at 581 district regulator sites. The SCADA system of IGDAS receives the EEW signal from KOERI and decide the proper actions according to the previously specified ground acceleration levels. Presently, KOERI sends EEW signal to the SCADA system of IGDAS Natural Gas Network of Istanbul. The EEW signal of KOERI is also transmitted to the serve shut down system of the Marmaray Rail Tube Tunnel and Commuter Rail Mass Transit System in Istanbul. The Marmaray system includes an undersea railway...
tunnel under the Bosphorus Strait. Several strong motion instruments are installed within the tunnel for taking measures against strong ground shaking and early warning purposes. This system is integrated with the KOERI EEW System. KOERI sends the EEW signal to the command center of Marmaray. Having received the signal, the command center put into action the previously defined measures. For example, the trains within the tunnel will be stopped at the nearest station, no access to the tunnel will be allowed to the trains approaching the tunnel, water protective caps will be closed to protect flood closing the connection between the onshore and offshore tunnels.