New perspective of great earthquakes along subduction zones

Conveners: Kyuichi Kanagawa (Graduate School of Science, Chiba University), Takashi Furumura (Center for Integrated Disaster Information Research (CIDIR) Interfaculty Initiative in Information Studies, The University of Tokyo), Shuichi Kodaira (Institute for Research on Earth Evolution Japan Agency for Marine-Earth Science and Technology), Masanobu Shishikura (Active Fault and Earthquake Research Center, GSJ/AIST), Chair: Saneatsu Saito (Japan Agency for Marine-Earth Science and Technology)

Mon. Apr 28, 2014 11:00 AM - 12:42 PM Main Hall (1F)

We explore a new perspective of great earthquakes along subduction zones by integrating results of historical earthquake and tsunami surveys, seismic and geodetic observations and experiments, laboratory experiments, material analyses, and numerical modeling on pre- and co-seismic processes and slips, seismic links, and the recurrence. We welcome presentations not only on great earthquakes along Japan Trench, Nankai Trough, and other subduction zones in the world, but also on their precursory or inducing large inland earthquakes.

11:00 AM - 11:15 AM

Stress estimation of Kure OSTs, Shimanto accretionary complex

*Yusuke KOMETANI
(1.yamaguchiuniversity)

Keywords: subduction zone, ancient seismogenic, calcite, twin density

Stress must be concentrated at front of seismogenic fault during rupture propagation. The level of this stress concentration depends on rupture propagation velocity, fault length, thickness of process zone and strength of host rock. However, few quantitative analysis was reported in natural fault due to difficulty of stress estimation. The calcite-twin piezometer, enables stress estimation from elastic rebounded rock, was proposed based on discrete element method simulation and tri-axial rock experiments (Sakaguchi et al., 2011). The Shimanto accretionary complex is ancient subduction zone and some fossil seismogenic faults were reported. Among them, pseudotachylyte bearing Kure OSTs cuts Cretaceous Shimotsui, Nonokawa Formation and Kure Melange. This Kure OSTs is composed of echelon formed small faults with thin damaged zone, and burial depth of the host rock is estimated as below 3 km in depth. We obtained three rock samples, applicable for calcite-twin piezometer. The highest value of estimated stress was approximately 420 MPa. This is much higher value than the other seismogenic fault in Shimanto accretionary. The Okitsu Fault, formed deeper depth of approximately 4 km, have suffered lower stress of 350 MPa at fault center (Sakaguchi et al., 2011). This indicates that much higher stress was concentrated at shallow Kure OST than deep Okitsu Fault. We propose two models to make high stress at shallow portion. Long crack length from deep to surface causes high stress concentration at shallow portion. Other model causes high stress due to narrower fault zone than the Okitsu Fault. Stress may tend to concentrate at narrower process zone of Kure OSTs than wide process zone of Okitsu Fault.