Basic Technologies, Integrated Systems and Applications of the NICT Science Cloud

MURATA, Ken T.\textsuperscript{1} ; WATANABE, Hidenobu\textsuperscript{1} ; UKAWA, Kentaro\textsuperscript{2} ; MURANAGA, Kazuya\textsuperscript{2} ; YUTAKA, Suzuki\textsuperscript{2} ; KASAI, Yasuko\textsuperscript{1} ; SATOH, Shinsuke\textsuperscript{1} ; ISHII, Shoken\textsuperscript{1} ; YAMAMOTO, Kazunori\textsuperscript{1} ; NAGATSUMA, Tsutomu\textsuperscript{1} ; TSUGAWA, Takuya\textsuperscript{1} ; NISHIOKA, Michi\textsuperscript{1} ; GUO, Zhihong\textsuperscript{3} ; KUROSAWA, Takashi\textsuperscript{4} ; MIZUHARA, Takamichi\textsuperscript{5}

\textsuperscript{1}National Institute of Information and Communications Technology, \textsuperscript{2}Systems Engineering Consultants Co., LTD., \textsuperscript{3}SURIGIKEN Co., Ltd., \textsuperscript{4}Hitachi Solutions East Japan, Ltd., \textsuperscript{5}CLEALINKTECHNOLOGY Co., Ltd.

This paper is to propose a cloud system for science, which has been developed at NICT (National Institute of Information and Communications Technology), Japan. The NICT science cloud is an open cloud system for scientists who are going to carry out their informatics studies for their own science. The NICT science cloud is not for simple uses. Many functions are expected to the science cloud; such as data standardization, data collection and crawling, large and distributed data storage system, security and reliability, database and meta-database, data stewardship, long-term data preservation, data rescue and preservation, data mining, parallel processing, data publication and provision, semantic web, 3D and 4D visualization, out-reach and in-reach, and capacity buildings.