The great success in the imaging of volcanoes with elementary particles called muons (muography) as well as in the detection of neutrinos generated inside the earth (geo-neutrinos) has resulted in observation opportunities completely independent from the capabilities of conventional geophysical methods. By facilitating the future goals and concerns of the geophysical community, ideally shared among the muography observation group, geo-neutrino observation group, and earth scientists through international and interdisciplinary interactions, the aim is to strengthen the evolution of particle geophysics. Various muographical projects have been promoted worldwide, and each international group has been producing valuable results. Concerning geo-neutrino detection, the quantity of radioactive materials generating heat inside the Earth will be recognized via the frequency of geo-neutrino counts. Since this radioactive heat generation reflects the geodynamics and the chemical composition of the building blocks of our planet, improvements to measurement accuracy will likely yield useful geoscientific information in the near future. With active cooperation between international communities, we aspire to expand the frontiers of earth observation techniques.

11:45 AM - 11:54 AM

[U02-P01_PG]Review of the recent muon radiography observations by using nuclear emulsion detector

3-min talk in an oral session

*Seigo MIYAMOTO¹ (1.The University of Tokyo)

Nuclear emulsion is one of three dimensional particle tracker which have micron position resolution and the feature that no electricity so we can put this detector everywhere easily and also this is suitable for non-fixed point observation. Several observations for volcanoes were done and will be done from 2011 to 2014. The imaging the of Unzen lava dome, which was formed from 1991 to 1995, was done by Miyamoto et al and they found the detector got many back ground particles and the amount is more than several times than expected muon signal. this implies that we are on the stage of background particle study. The emulsion cloud chamber (ECC) is a modular structure made of a sandwich of passive material plates such as lead interleaved with emulsion film layers. Nishiyama et al studied the source of background noise in cosmic-ray muon radiography using ECC. They found that the origin of background is expected to be electromagnetic components of air-showers or cosmic-ray muons scattered in topographic material with momentums is less than 2GeV/c. The shallow conduit shape of Stromboli will provide the important information for eruption dynamics modeling by Tioukov et al. Hernandez et al put the emulsion detector near the top of summit of Teide volcano to investigate the past eruption history of Teide. Teide volcano is located in Teferife, Canary Islands, Spain. They are also under observation of the fault appeared in La Palma, Canary Island, in 1949, which is the sign of huge land collapse or not. The width of the fault is expected to be 1 meter or less, so high position resolution of emulsion detector is suitable for this observation. They will measure the width, delth and the porosity of this fault.