[U-02_28AM2] Particle Geophysics

Convener:*Hiroyuki Tanaka(Earthquake Research Institute, the University of Tokyo), Hiroko Watanabe(RCNS,Tohoku-U), Cristiano Bozza(U-Salerno), Dominique Gibert(IPGParis), William McDonough(U-Maryland), John Learned(U-Hawaii), Chair:Hiroyuki Tanaka(Earthquake Research Institute, the University of Tokyo)

Mon. Apr 28, 2014 11:00 AM - 12:42 PM 419 (4F)

The great success in the imaging of volcanoes with elementary particles called muons (muography) as well as in the detection of neutrinos generated inside the earth (geo-neutrinos) has resulted in observation opportunities completely independent from the capabilities of conventional geophysical methods. By facilitating the future goals and concerns of the geophysical community, ideally shared among the muography observation group, geo-neutrino observation group, and earth scientists through international and interdisciplinary interactions, the aim is to strengthen the evolution of particle geophysics. Various muographical projects have been promoted worldwide, and each international group has been producing valuable results. Concerning geo-neutrino detection, the quantity of radioactive materials generating heat inside the Earth will be recognized via the frequency of geo-neutrino counts. Since this radioactive heat generation reflects the geodynamics and the chemical composition of the building blocks of our planet, improvements to measurement accuracy will likely yield useful geo-scientific information in the near future. With active cooperation between international communities, we aspire to expand the frontiers of earth observation techniques.

11:45 AM - 11:54 AM

A Historical View on the Degradation on Seismic Performance of The Parthenon, Greece and Muography as the Potential Eval

3-min talk in an oral session

*Shimpei AOKI¹, Hiroyuki TANAKA², Michinori OHSHIRO³, Maria YAMASHITA⁴ (1.Faculty of Letters, Kansai University, 2.Earthquake Research Institute, the University of Tokyo, 3.Faculty of Letters, Komazawa University, 4.Graduate Division of Arts and Sciences, Komazawa University)

Keywords:a Historical View, the Degradation on Seismic Performance, the Parthenon, Muography

To reinforce the Parthenon against earthquakes, the process of disassembling and reassembling Doric columns is obligatory. For this, the column strength and durability is required to withstand the reconstruction process. Wooden rods in the dowels of each drum provide the mechanical strength of each column, however some of these rods may have been damaged during the Venetian bombardment of the Acropolis on September 26, 1687. Due to the size of the Parthenon's Doric columns, muography is more appropriate to image the internal structure than conventional radiographic techniques. Muography may be utilized as a non-destructive technique targeting the inside composition of the Parthenon's Doric columns, potentially providing the following information: (1) the durability of the columns against future earthquakes, and (2) the magnitude of the internal damage sustained during the Venetian bombardment. The results of this muographic survey would aid conservator’s efforts to protect the Parthenon along with the possibly of applying to other cultural properties. Secondly, the state of the wooden rod inside the column will provide evidence for the time and temperature around the column (based on the geometrical structure and thermal conductivity of the column) which would contribute further evidence to historical discussions particular to the Parthenon, such as estimates of the amount of gun powder.
stored in the Parthenon by the Ottoman Empire and information on the aforementioned siege. Muography may supplement efforts to preserve and protect the Parthenon as well as contributing to our understanding of the historical events that have occurred in this ancient structure.