Japan Geoscience Union Meeting 2014

(28 April - 02 May 2014 at Pacifico YOKOHAMA, Kanagawa, Japan)

©2014. Japan Geoscience Union. All Rights Reserved.

U05-14 Room:419

Time: April 30 15:00-15:15

The effect of methane concentration on methanotrophic bathymodiolid mussels in the Okinawa Trough hydrothermal fields

 $MIYAZAKI, Yukari^{1*}; SUNAMURA, Michinari^1; ISHIBASHI, Junichiro^2; WATANABE, Hiromi^3; KONNO, Uta^3; SUZUKI, Yohey^1$

As methane (CH_4) is a greenhouse effect gas, the emergence and activity of CH_4 -oxidizing organisms is suggested to have triggered global glaciation. Although the threshold concentrations of CH_4 for the growth of CH_4 -oxidizing microorganisms under laboratory conditions are well known, CH_4 -oxidizing organisms in the field is poorly constrained for the threshold concentration of CH_4 for growth. This information is critical to reconstruct atmospheric and oceanic CH_4 levels when the activities of methanotrophic organisms are indicated from geologic records with ^{12}C -enriched organic matter. We investigated sedimenthosted deep-sea hydrothermal fields in the Okinawa Trough where abundantly emitted CH_4 is known to support methanotrophic ecosystem represented by Bathymodiolid mussels. The distribution of Bathymodiolid mussels and the CH_4 concentrations of their habitats were determined in five hydrothermal fields throughout the Okinawa Trough, and it is suggested that approximately $10\mu M$ is a threshold CH_4 concentration for the methanotrophic organism in the deep-sea ecosystem.

Keywords: hydrothermal vent, Bathymodiolus sp., Neoverruca sp., methanotroph, Okinawa Trough

¹Graduate School of Science, the University of Tokyo, ²Graduate School of Science, the University of Kyusyu, ³JAMSTEC