[U-05_30PM2] Interrelation between Life, Water, Mineral, and Atmosphere

Convener:*Tsubasa Otake(Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University), Yohey Suzuki(Graduate School of Science, The University of Tokyo), Fumito Shiraiishi(Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University), Ken Takai(Extremobiosphere Research Center, Japan Agency for Marine-Earth Science & Technology), Yuichiro Ueno(Department of Earth and Planetary Sciences, Tokyo Institute of Technology), Takeshi Naganuma(Graduate School of Biosphere Science), Takeshi Kakegawa(Graduate School of Science, Tohoku University), Tadashi Yokoyama(Department of Earth and Space Science, Graduate School of Science, Osaka University), Kentaro Nakamura(Precambrian Ecosystem Laboratory (PEL), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)), Chair:Yohey Suzuki(Graduate School of Science, The University of Tokyo), Takeshi Naganuma(Graduate School of Biosphere Science)

Wed. Apr 30, 2014 4:15 PM - 5:45 PM 419 (4F)

Life in Earth is based on a diversity of physical and chemical dynamism and processes of Earth in the 4 billion years of history. It is substantially said as the history of interrelation between Life, Water, Mineral (Solid Earth) and Atmosphere. Interdisciplinary approach, way of thinking and communication are necessary. This session will be a cradle for such kind of interdisciplinary research.

5:15 PM - 5:30 PM

[U05-P09_PG] Microbial processes forming lamination in hot spring stromatolites by sulfur oxidizing bacteria and cyanobacteria.

3-min talk in an oral session

*Tomoyo OKUMURA¹, Chizuru TAKASHIMA², Misa HIRANO², Akihiro KANO³ (1.JAMSTEC, 2.Faculty of Culture and Education, Saga Univ., 3.SCS, Kyushu Univ.)

Keywords: travertine, lamination, stromatolite, cyanobacteria, sulfur-oxidizing bacteria

Travertines are carbonate precipitates from hot-spring water containing a sufficient amount of calcium and carbon dioxide. Most of travertines show sub-mm order laminations that were resemble to ancient stromatolites. Recently, daily microbial processes were identified in some travertines precipitated from some sulfide-poor and moderate temperature (60 degree C) and sulfide-rich springs (3) likely because such daily microbe-mineral interaction might not be occurred. In order to understand the geomicrobiological system in high temperature and sulfide-rich spring, this study investigates a travertine in Sipoholon, Northern Sumatra, Indonesia. Sipoholon hot spring forms the hugest travertine mound among the hot springs in Tarutung area located about 30 km south from the Lake Toba. The travertine mound spread in total area of 50,000 km². The actively precipitated region was separated 3 areas; A is natural mound without artificial effect, B is the mounds in a quarry, C is exposes the rim pools behind spa facilitates. In all area, sulfur-rich yellow sediments were formed near the vents, while white laminated sediment was formed from midstream to downstream. The surface color of the laminated travertine was changed with water temperature; pale pink around 55 degree C and green below 50 degree C. Lamination in the green travertine consisted of light colored crystalline layer and dark colored biofilm-rich porous layer in the interval of 0.5-1.0 mm. While, some lamination in the pink travertine was not clear. 12 sequences of water and travertine samples were collected at a green
travertine and a pink travertine in Area C every 4 hours during 48 hours. Samples of both types of the
travertine showed that the dark layer was formed during daytime and light colored layer was formed
during nighttime without variation in pH, water temperature, Ca ion concentration, alkalinity, and flow.
Only dissolved oxygen concentration showed the daily variation in the water chemistry, which was higher
during the daytime and lower during the nighttime. Phylogenetic analysis on 16S rRNA gene showed that
the pink and green travertines have a microbial composition dominated by obligatory
chemolithoautotrophic sulfur-oxidizing bacteria. Phototrophs, cyanobacteria and chloroflexus were more
diverse in the green travertine than in the pink one. Epifluorescence microscopy showed that
phototrophs were concentrated in the diurnal dark layer in the green travertine, while sparsely
distributed near the surface in the pink travertine. These results suggest that formation of phototroph
biofilm in daily cycle was responsible for lamina formation in the green travertine same as previous
study. On the other hand, formation of sulfur-oxidizer biofilm stimulated daytime increment of oxygen
concentration was likely responsible for lamina formation in the pink travertine. The obscure lamination
in the pink travertine possibly due to growth of chemolithoautotrophs stimulated by extrinsic factor that
is daily supplement of oxygen, in contrast to intrinsic daily growth of phototrophs. This novel microbial
process could be occurred in ancient stromatolites formed under the anoxic sulfide-rich ancient
585.