Japan Geoscience Union Meeting 2015

(May 24th - 28th at Makuhari, Chiba, Japan) ©2015. Japan Geoscience Union. All Rights Reserved.

SGC51-P05

Room:Convention Hall

Time:May 24 18:15-19:30

Possibility of K-Ar age mapping on the moon using cosmogenic ³⁹Ar

TAKESHIMA, Yuko 1 ; HYODO, Hironobu 2* ; ITAYA, Tetsumaru 2

¹NEC Aerospace systems, ²RINS, Okayama Univ. of Sci.

Rapid and wide range of age survey on the moon surface requires in situ measurement. ³⁹Ar of cosmogenic origin from ³⁹K in meteorite has been noticed since the early stage of noble gas research, and became a cue to the ⁴⁰Ar/³⁹Ar method. If the production rate of ³⁹Ar is considered uniform, the production and decay of ³⁹Ar reaches to equilibrium after a long time, since ³⁹Ar has a half life of 293 years. This half life is long enough to detect ³⁹Ar in meteorites and moon rocks, and short enough to reach equilibrium of the isotope. Thus, such rocks or minerals possess a certain amount of ³⁹Ar age can be determined. For a start, a precise date of one of those samples in a laboratory and ⁴⁰Ar/³⁹Ar ratio measurement of the same sample in the field are required to obtain J-value in the field. ⁴⁰Ar/³⁹Ar ratios measurement of the rest of unknowns in the field allow us to calculate ages. Interfering isotopes from calcium will not affect much as long as Ca/K ratio is low. Samples in a depth or a shadow from exposure are not suitable for the measurement since the neutron density attenuates with depth. However, no need for atmospheric contamination, mass measurement and ³⁶Ar measurement may provide us more mobility and rapid measurement.

Keywords: ³⁹Ar, Cosmogenic, age distribution, ⁴⁰Ar/³⁹Ar age, moon surface