Report of the STEL optical observation at the Tromsoe EISCAT radar site by March 2015

OYAMA, Shin-ichiro ${ }^{1 *}$; NOZAWA, Satonori ${ }^{1}$; SHIOKAWA, Kazuo ${ }^{1}$; OTSUKA, Yuichi ${ }^{1}$; TSUDA, Takuo ${ }^{2}$;
TAKAHASHI, Toru ${ }^{1}$; FUJII, Ryoichi ${ }^{1}$
${ }^{1}$ Solar-Terrestrial Environment Laboratory, ${ }^{2}$ Department of Information and Communication Engineering, University of ElectroCommunications

Solar-Terrestrial Environment Laboratory (STEL) has been operating various kinds of optical instruments for more than 10 years at the Troms ϕ EISCAT (European Incoherent Scatter) radar site in Norway ($69.6^{\circ} \mathrm{N}, 19.2^{\circ} \mathrm{E}$), which is one of the state-of-art observatories at high latitudes. Five instruments are now in automatic operation regularly from October to March: (1) three-wavelength photometer ($427.8 \mathrm{~nm}, 630.0 \mathrm{~nm}$, and 557.7 nm), which is fixed to look along the magnetic field line, (2) digital camera for monitoring weather and aurora, (3) proton all-sky camera (486.1 nm), (4) multi-wavelength all-sky camera ($557.7 \mathrm{~nm}, 630.0 \mathrm{~nm}$, OH band, $589.3 \mathrm{~nm}, 572.5 \mathrm{~nm}$, and 732.0 nm), and (5) Fabry-Perot interferometer (557.7 nm, 630.0 nm , and 732.0 nm). The quick looks are available on the web at www.stelab.nagoya-u.ac.jp/ eiscat/data/EISCAT.html. These instruments are programmatically operated, and they have contributed to many campaign observations with the EISCAT radars, rockets, satellites, and other ground-based instruments by adjusting the observation mode.

Keywords: aurora, air glow, optical instrument, ionosphere, thermosphere, polar region

