Japan Geoscience Union Meeting 2015

(May 24th - 28th at Makuhari, Chiba, Japan)

©2015. Japan Geoscience Union. All Rights Reserved.

apan Geoscience Union

STT54-06

Room:201A

Evaluation of noise equivalent sigma_0 for Pi-SAR-L2 and PALSAR-2.

WATANABE, Manabu 1* ; MOTOHKA, Takeshi 1 ; OHKI, Masato 1 ; NATSUAKI, Ryo 1 ; YONEZAWA, Chinatsu 2 ; SHIMADA, Masanobu 1

¹JAXA, ²Tohoku University

The noise equivalent sigma_0 (NESZ) were evaluated to the data simultaneously observed with Pi-SAR-L2 and PALSAR-2 by full polarimetry mode. The observation were done on Sept. 11, 2014 over Sendai airport. Fast Fourier transforms (FFTs) was applied to the data, and 10, 20, 30, 40, 50 dB random noise were added in the frequency domain. Inverse FFTs was applied to obtain the time domain data. The change of sigma_0 for the runway in the Sendai airport was examined, and the NESZ for Pi-SAR-L2 and PALSAR-2 were evaluated from the data. Estimated NESZ were -46.2, -60.5, -61.0, -55.0 dB for sigma_0 HH, HV, VH, VV of Pi-SAR-L2 data, and -40.3, -50.0, -51.3, -43.0 dB of PALSAR-2 data. The NESZ for the Pi-SAR-L2 was 6 to 12 dB better than those for the PALSAR-2.

The Pi-SAR-L2 sigma_0 profile for the area, where the incident angle is same, were compared with the PALSAR-2 sigma_0 for each polarization. The area, where sigma_0 is more than -20 dB shows almost same profile, and shows same sigma_0. On the other hand, the area, where sigma_0 is less than -20 dB shows the difference. The difference was not explained by the NESZ estimated above. One of the possible causes for the higher NESZ may be higher azimuth ambiguity for the PALSAR-2 data.

Keywords: Full polarimetry,, SAR