A Partial Melting Study of an Ordinary Chondrite Composition with Application to the Felsic Asteroidal Crust Formation

USUI, Tomohiro1*; JONES, John2; DAVID, Mittlefehldt2

1Tokyo Institute of Technology, 2NASA

Melting experiments of a synthesized, alkali-bearing, H-chondrite composition were conducted at ambient pressure with three distinct oxygen fugacity conditions (IW-1, IW and IW+2). Oxygen fugacity conditions significantly influence the compositions of partial melts. Partial melts at IW-1 are distinctly enriched in SiO\textsubscript{2} relative to those of IW and IW+2 melts. The silica-enriched, reduced (IW-1) melts are characterized by high alkali contents and have silica-oversaturated compositions. In contrast, the silica-depleted, oxidized (?IW) melts, which are also enriched in alkali contents, have distinctly silica-undersaturated compositions. These experimental results suggest that alkali-rich, felsic, asteroidal crusts as represented by paired achondrites Graves Nunataks 06128 and 06129 should originate from a low-degree, relatively reduced partial melt from a parent body having near-chondritic compositions. Based on recent chronological constraints and numerical considerations as well as our experimental results, we propose that such felsic magmatism should have occurred in a parent body that is smaller in size and commenced accreting later than those highly differentiated asteroids having basaltic crusts and metallic cores.

\textbf{Figure caption:}
Summary of magmatic conditions of achondrite suites in terms of degree of melting and fO\textsubscript{2} (relative to IW). See [1] for details.

\textbf{Reference:}

Keywords: asteroid, crust, ordinary chondrite