Simulation of irregular wave generation due to fault formation by an elasto-plastic finite deformation analysis

YAMADA, Shotaro1* ; NODA, Toshihiro 1 ; ASAOKA, Akira2

1Nagoya University, 2Association for the Development of Earthquake Prediction

The authors, in the past study1), simulated shear bands formation in ground due to strike-slip fault by using a soil-water coupled finite deformation code taking into inertia force, \textit{GEOASIA}2). In the present study, the analysis code was employed to simulate formation of normal and reverse faults and wave generation due to the formation assuming a ground composed of a highly brittle soil. The analysis code mounts the SYS Cam-clay model3) as an elasto-plastic constitutive model which can describe a wide variety of soils within the same theoretical framework. Also, since the rate-type equation of motion is precisely time-integrated, progressive failure will be analyzed as a nonlinear dynamic problem, and then generation and/or propagation of waves induced by shear bands formation will also naturally be developed in the analysis4,5). Making use of this characteristic, wave generation induced by fault formation was focused on. When the ground was compressed from lateral faces by displacement control under plane strain condition, a reverse fault-like failure was generated as a progressive failure with strain localization (Figure 1). At that time, elastic energy accumulated on the non-destructive area at the compression stage was released at once. In the case of a horizontally stratified ground, as failure progresses rapidly, acceleration motion was released to the max. at first motion and decayed exponentially with time in a similar way that artificial earthquake shows (Figure 2). On the other hand, in the case of a ground with initial random imperfections, as some small failure events exist in a large failure event, an irregular wave like a natural seismic wave was generated (Figure 3). On the other hand, when the ground with the initial random imperfections was extended from lateral side by strain control, a normal fault was generated and another irregular wave was generated.

Keywords: natural fault, reverse fault, seismic wave, strain localization, inertial force, elasto-plastic body