Contribution of plant-associated microorganisms as global sinks of atmospheric hydrogen *Manabu Kanno¹, Philippe Constant², Hideyuki Tamaki¹, Yoichi Kamagata¹ 1.National Institute of Advanced Industrial Science and Technology, 2.Centre INRS-Institut Armand-Frappier, Canada Hydrogen (H_2) is an important constituent of the atmosphere, with a typical mixing ratio of 0.530 parts per million by volume (ppmv). Rising H₂ emissions under a future H₂-based economy are concerned to increase the atmospheric burden of H₂, resulting to the indirect influence of the lifetime of greenhouse gas $\mathrm{CH_4}$, an alteration of temperature and ozone loss in the stratosphere. Thus, mitigation of H₂ emission is of critical importance for atmospheric chemistry. The most part (~80%) of tropospheric H₂ is consumed by microorganisms in soil. A recent literature survey of H₂ flux measurements unveiled that soil H, uptake is responsible for the loss of 40 to 90 Tg yr⁻¹. Recently, high-affinity H₂-oxidizing bacteria possessing novel hydrogenase have been found as important contributors to the soil H₂ uptake. Although previous experiments using molecular tritium reported the occurrence of significant H₂ uptake activity in vegetation, there has been no report on the identification and diversity of the responsible microorganisms. This study aimed to verify the existence of plant-associated bacteria possessing the ability to consume atmospheric H₂. We first investigated the presence of hhyL gene in various plant species. The hhyL gene, which encodes for the large subunit of the novel group of hydrogenase, has been generally used as a functional biomarker to evaluate the distribution, taxonomic diversity, and abundance of high-affinity H,-oxidizing bacteria. In total, 42 hhyL gene sequences were successfully detected in all tested herbaceous plants, indicating a wide distribution of high-affinity H,-oxidizing bacteria in plants. It is noteworthy that the abundance levels of hhyL gene detected in plants were comparable to those detected in soil. High-affinity H₂-oxidizing bacteria were isolated from inside herbaceous plant tissues. Among 145 isolates, 7 Streptomyces strains were shown to possess hhyL gene. The H₂ uptake activity was evaluated by gas chromatography. All the isolates reduced H₂ concentration to less than 0.530 ppmv, demonstrating the ability to consume H_2 at ambient level. Sterile plant seedlings were inoculated with selected isolates to verify their ability to penetrate and disseminate in plant tissues and scavenge atmospheric H_{2} in plant. After four weeks of seedling inoculation, an internalization of the bacteria in plant tissues was visualized by fluorescence in situ hybridization imaging. H_2 oxidation rates measured in plant fractions ranged from 1079 to 3472 pmol $g_{(dw)}^{-1}$ h^{-1} . These rates are comparable to the previously observed activity of atmospheric tritium uptake in other plants. Importantly, atmospheric H₂ is not oxidized in aseptically grown plants, clearly showing that plant-associated bacteria was responsible for H, loss. H, uptake activity per bacterial cell was comparable between plant and soil, demonstrating that both environments are favorable for the microbial-mediated H₂ uptake. In conclusion, this study demonstrated the occurrence of plant-associated high-affinity H_2 -oxidizing bacteria and their ability to consume atmospheric H_2 on plant surface or inside plant tissues. From a global perspective, herbaceous and woody plant biomass represent approximately 64 Pg, and 736 Pg, respectively. Considering that high-affinity H_2 -oxidizing bacteria may be present and active in these plants, the contribution of plant-associated bacteria deserves more attention to better understand the global cycling of atmospheric H_2 . Keywords: biogeochemistry, microbial ecology, tropospheric H2 cycle, vegetation