Preliminary sensitivity study of the GOSAT-2 FTS SWIR retrievals based on the designed specifications

*Yukio Yoshida¹, Akihide Kamei¹, Isamu Morino¹, Makoto Saito¹, Hibiki Noda¹, Tsuneo Matsunaga¹

1.NIES

The Greenhouse gases Observing SATellite (GOSAT) was launched in January 2009 and observed global distribution of the column-averaged dry air mole fractions of carbon dioxide and methane (XCO_2 and XCH_4) for about seven years. As a successor mission to the GOSAT, GOSAT-2 is planned to be launched in early 2018, and its critical design review (CDR) was completed. GOSAT-2 also has a Fourier transform spectrometer (FTS) like GOSAT to obtain short-wavelength infrared (SWIR) light reflected from the earth's surface and thermal infrared (TIR) radiation emitted from the ground and atmosphere. According to the current design of the FTS-2 (FTS onboard the GOSAT-2), its SNR is higher than or almost equal to that onboard the GOSAT, and it covers the 2.3 μ m carbon monoxide (CO) band as well as the 1.6 and 2.0 μ m CO $_2$ bands and 1.67 μ m CH $_4$ band. Our preliminary sensitivity test shows that the SNR improvement in SWIR bands reduces the retrieval random error (precision) about 15% for XCO $_2$ and 35% for XCH $_4$ than those of GOSAT.

Keywords: GOSAT-2, XCO2, XCH4